用户名: 密码: 验证码:
表面活性剂增强喷雾对褐煤细颗粒物的抑制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancing suppression performance of spray on lignite fine particles by adding surfactant
  • 作者:周磊 ; 杨树莹 ; 吴新 ; 袁竹林 ; 杨林军
  • 英文作者:Zhou Lei;Yang Shuying;Wu Xin;Yuan Zhulin;Yang Linjun;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University;
  • 关键词:表面活性剂 ; 褐煤 ; 细颗粒物 ; 抑制 ; 喷雾 ; 润湿性
  • 英文关键词:surfactant;;lignite;;fine particles;;inhibition;;water-spraying;;wetting performance
  • 中文刊名:DNDX
  • 英文刊名:Journal of Southeast University(Natural Science Edition)
  • 机构:东南大学能源热转换及其过程测控教育部重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:东南大学学报(自然科学版)
  • 年:2019
  • 期:v.49
  • 基金:国家重点研发计划资助项目(2016YFB0600602)
  • 语种:中文;
  • 页:DNDX201902012
  • 页数:8
  • CN:02
  • ISSN:32-1178/N
  • 分类号:77-84
摘要
针对喷雾法对褐煤粉尘抑制性能较差的问题,对比了8种表面活性剂的表面张力和对褐煤粉尘的润湿性能,并研究了表面活性剂的添加对溶液雾化性能的影响.最后在模拟试验平台开展了喷雾抑尘试验.试验结果表明,褐煤粉尘表面的化学结构使得褐煤具有较强的疏水性,表面活性剂对褐煤粉尘的润湿性能不仅取决于表面张力还取决于表面活性剂自身的结构.表面活性剂的加入可以同时降低液滴的平均粒径并使得液滴的运动速度加快,增强其对细颗粒物的捕集性能.添加表面活性剂可以提高传统喷雾法对褐煤细颗粒物的抑尘效率,其中非离子表面活性剂曲拉通X-100溶液的抑尘性能最佳.装置内细颗粒物的质量浓度和数量浓度下降为15.13 mg/m~3和1.0×10~6 cm~(-3).对比采用纯水喷雾的方法,其质量浓度抑尘效率从53.7%上升到91.6%.
        Aiming at the poor suppression performance of spray on lignite particles, the wetting ability and the surface tension of 8 surfactant solutions, as well as the atomization performances of droplets were studied. The suppression experiment of water-spraying on lignite dust by adding surfactant was conducted by the simulation facility. The results show that lignite has strong hydrophobic properties owing to its chemical properties. The wetting ability of the surfactants is both depended on the surface tension and chemical structure of the surfactants. The addition of surfactant reduces the median diameter(D50) of the droplets and increases the axial velocity of droplets, resulting in the improvement of fine particle removal performance. Furthermore, by adding surfactant into water, the removal efficiency of water-spraying on lignite fine particles is obviously enhanced. The nonionic surfactant, called the TritonX-100, exhibits the superior wetting and removal performance on lignite dust. The number and mass concentrations of lignite fine particles in the facility are 15.13 mg/m~3 and 1.0×10~6 cm~(-3) after spraying of TritonX-100 solution. Compared with the removal efficiency of traditional spraying method, the removal efficiency of the fine particle mass concentration is increased from 53.7% to 91.6%.
引文
[1] Zheng S, Pozzer A, Cao C X, et al. Long-term (2001—2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5715-5725. DOI:10.5194/acp-15-5715-2015.
    [2] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature, 2014, 514(7521): 218-222. DOI:10.1038/nature13774.
    [3] Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing[J]. Environmental Science & Technology, 2006, 40(10): 3148-3155. DOI:10.1021/es051533g.
    [4] 黄永琛, 杨宋, 陈辰, 等. 燃煤电厂烟尘超净排放技术路线探讨[J]. 能源与节能, 2015(3): 126-129. DOI:10.3969/j.issn.2095-0802.2015.03.056.Huang Y C, Yang S, Chen C, et al. Discussion on smoke clean emissions technology in coal-fired power plant[J]. Energy and Conservation, 2015(3): 126-129. DOI:10.3969/ j.issn.2095-0802. 2015.03.056.(in Chinese)
    [5] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状[J]. 煤炭学报, 2015, 40(11): 2629-2640. DOI:10.13225/j.cnki.jccs.2015.8001.Zhao Y C, Ma S M, Yang J P, et al. Status of ultra-low emission technology in coal-fired power plant[J]. Journal of China Coal Society, 2015, 40(11): 2629-2640. DOI:10.13225/j.cnki.jccs.2015.8001.(in Chinese)
    [6] 赵靓. 机动车尾气污染及其减排措施[J]. 环境科学与管理, 2008, 33(5): 87-88, 107. DOI:10.3969/j.issn. 1673-1212.2008.05.023.Zhao L. Tail gas pollution and decreasing measures[J]. Environmental Science and Management, 2008, 33(5): 87-88, 107. DOI:10.3969/j.issn.1673-1212.2008.05.023. (in Chinese)
    [7] 胡书英. 减少尾气污染改善空气质量: 太原市机动车污染防治的实践[J]. 科技情报开发与经济, 2012, 22(13): 126-127. DOI:10.3969/j.issn.1005-6033. 2012.13. 054.Hu S Y. Improving air quality through reducing tail-gas pollution: The practice of motor vehicle pollution control in Taiyuan city[J]. Sci-Tech Information Development & Economy, 2012, 22(13): 126-127. DOI:10.3969/j.issn. 1005-6033.2012.13.054.(in Chinese)
    [8] Santacatalina M, Reche C, Minguillón M C, et al. Impact of fugitive emissions in ambient PM levels and composition:A case study in Southeast Spain[J]. Science of the Total Environment, 2010, 408(21): 4999-5009. DOI:10.1016/ j.scitotenv.2010.07.040.
    [9] Fan S B, Tian G, Li G, et al. Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China[J]. Atmospheric Environment, 2009, 43(38): 6003-6010. DOI:10.1016/j.atmosenv. 2009.08. 028.
    [10] 徐祎, 朱庚富. 煤场防风网防尘技术研究[J]. 环境科学与管理, 2013, 38(9): 93-98. DOI:10.3969/j.issn.1673-1212.2013.09.022.Xu Y, Zhu G F. Study of dust control with windbreak in coal storage yard[J]. Environmental Science and Management, 2013, 38(9): 93-98. DOI:10.3969/j.issn. 1673-1212.2013.09.022.(in Chinese)
    [11] 刘生玉, 苏立红, 郭建英, 等. 散料表层渗透固化机理及技术应用研究[J]. 煤炭学报, 2011, 36(S1): 125-130. DOI:10.13225/j.cnki.jccs.2011.s1.032.Liu S Y, Su L H, Guo J Y, et al. Research of mechanism of bulk coal surface layer permeation solidification and its technology application[J]. Journal of China Coal Society, 2011, 36(S1): 125-130. DOI:10.13225/j.cnki.jccs. 2011.s1.032.(in Chinese)
    [12] Okonkwo E M, Ofoegbu O. Renewable eco-friendly material for road dust suppression and prevention[C]//2nd International Conference on Waste Management,Water Pollution Air Pollution, Indoor Climate (WWAI′08). Corfu, Greece, 2008: 266-270.
    [13] Grundnig P W, H?flinger W, Mauschitz G, et al. Influence of air humidity on the suppression of fugitive dust by using a water-spraying system[J]. China Particuology, 2006, 4(5): 229-233. DOI:10.1016/s1672-2515(07) 60265-6.
    [14] 吴超. 化学抑尘[M]. 长沙:中南大学出版社, 2003:78,123-124.
    [15] Nguyen V G. Compositions for dust suppression and methods: US, US8052890 [P]. 2011.
    [16] Ding C, Nie B S, Yang H, et al. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution[J].Procedia Engineering, 2011, 26: 1314-1321. DOI:10.1016/j.proeng.2011.11. 2306.
    [17] Medeiros M A, Leite C M M, Lago R M. Use of glycerol by-product of biodiesel to produce an efficient dust suppressant[J].Chemical Engineering Journal, 2012, 180: 364-369. DOI:10.1016/j.cej.2011.11.056.
    [18] 尹立群. 我国褐煤资源及其利用前景[J]. 煤炭科学技术, 2004, 32(8): 12-14, 23. DOI:10.3969/j.issn.0253-2336.2004.08.004.Yin L Q. Lignite resources and utilization outlook in China[J]. Coal Science and Technology, 2004, 32(8): 12-14, 23. DOI:10.3969/j.issn.0253-2336.2004.08.004.(in Chinese)
    [19] 煤尘卫生标准研制课题组, 苍恩志, 刘树春. 煤尘对呼吸系统危害的研究[J]. 工业卫生与职业病, 1989, 15(5): 265-268. DOI:10.13692/j.cnki.gywsyzyb.1989. 05.002.
    [20] 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究[J]. 煤炭学报, 2009, 34(7): 938-941. DOI:10. 13225/j.cnki.jccs.2009.07.020.Cai Z Q, Luo Z M, Cheng F M. Experimental study on propagation characteristics of gas/coal dust explosion[J]. Journal of China Coal Society, 2009, 34(7): 938-941. DOI:10.13225/j.cnki.jccs.2009.07.020.(in Chinese)
    [21] 罗根华, 李博, 丁莹莹, 等. 煤尘化学组成及结构参数对煤尘润湿性的影响规律[J]. 大连交通大学学报, 2016, 37(3): 64-67. DOI:10.3969/j.issn.1673-9590.2016. 03.016.Luo G H, Li B, Ding Y Y, et al. Study on influence of coal dust wettability by chemical composition and structure parameters[J]. Journal of Dalian Jiaotong University, 2016, 37(3): 64-67. DOI:10.3969/j.issn.1673-9590.2016.03.016.(in Chinese)
    [22] Glanville J O, Wightman J P. Actions of wetting agents on coal dust[J].Fuel, 1979, 58(11): 819-822. DOI:10.1016/ 0016-2361(79)90189-3.
    [23] 陈宗淇. 胶体与界面化学 [M]. 北京:高等教育出版社, 2001:30-31.
    [24] 杨静. 煤尘的润湿机理研究[D]. 青岛: 山东科技大学, 2008.Yang J. Study on wettability mechanism of coal dust[D]. Qingdao: Shandong University of Science and Technology, 2008.(in Chinese)
    [25] 曹建明. 喷雾学[M]. 北京:机械工业出版社, 2005:17-24.
    [26] Ejim C E, Rahman M A, Amirfazli A, et al. Effects of liquid viscosity and surface tension on atomization in two-phase, gas/liquid fluid coker nozzles[J].Fuel, 2010, 89(8): 1872-1882. DOI:10.1016/j.fuel.2010.03.005.
    [27] 周刚. 综放工作面喷雾降尘理论及工艺技术研究[D].青岛: 山东科技大学, 2009.Zhou G. Research of theory about dust prevention by water-cloud and relevant techniques for fully-mechanized caving coal face[D]. Qingdao: Shandong University of Science and Technology, 2009.(in Chinese)
    [28] 颜金培, 杨林军, 张霞, 等. 润湿剂促进燃油细颗粒捕集的实验研究[J]. 化工学报, 2008, 59(10): 2616-2621. DOI:10.3321/j.issn:0438-1157.2008.10.031.Yan J P, Yang L J, Zhang X, et al. Experimental study on promotion of fine particles capture with wetting agents[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(10): 2616-2621. DOI:10.3321/j.issn:0438-1157. 2008.10.031.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700