用户名: 密码: 验证码:
1100 kV GIL快速接地开关分闸过程C_4F_7N/CO_2混合气体介质绝缘强度计算分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation and Analysis on Dielectric Strength of C_4F_7N/CO_2 in 1100 kV GIL HSGS During the Opening Process
  • 作者:徐建源 ; 刘振祥 ; 夏亚龙 ; 孙岗 ; 谭盛武 ; 林莘
  • 英文作者:XU Jianyuan;LIU Zhenxiang;XIA Yalong;SUN Gang;TAN Shengwu;LIN Xin;School of Electric Engineering, Shenyang University of Technology;State Grid Corporation of China;Pinggao Group Co., Ltd.;
  • 关键词:HSGS ; 绝缘强度 ; 空载分闸 ; 环保 ; C4F7N/CO2
  • 英文关键词:HSGS;;dielectric strength;;no-load opening;;environmentally friendly;;C4F7N/CO2
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:沈阳工业大学电气工程学院;国家电网有限公司;平高集团有限公司;
  • 出版日期:2018-10-23 17:07
  • 出版单位:高电压技术
  • 年:2018
  • 期:v.44;No.311
  • 基金:国家重点研发计划(2017YFB0902500);; 国家电网公司总部科技项目(环保型管道输电关键技术);; 国家自然科学基金(51777130)~~
  • 语种:中文;
  • 页:GDYJ201810003
  • 页数:10
  • CN:10
  • ISSN:42-1239/TM
  • 分类号:27-36
摘要
GIL快速接地开关气室内介质的绝缘强度受介质种类、分合闸速度及气室压强等因素的影响。针对1 100k VGIL超B类快速接地开关空载分闸过程,计算以环保型混合气体C_4F_7N/CO_2为绝缘介质时,气室内气流动态变化过程和电场分布,并依据气体击穿判据,计算不同混合气体配比、分闸速度和气室压强下介质的临界击穿电压,分析介质发生绝缘击穿的情况,结合液化温度,提出满足绝缘要求的混合气体配比、分闸速度和气室压强。研究结果表明:接地开关在分闸过程中,除动、静触头间隙外,动触头和静端屏蔽罩之间同样是介质击穿的薄弱区域;当气室压强为0.45 MPa、分闸速度为2.9 m/s、开距为11 mm时,20%C_4F_7N/80%CO_2的最小相对绝缘强度分别是15%C_4F_7N/85%CO_2的1.12倍和SF6的1.02倍;开关充0.45 MPa的20%C_4F_7N/80%CO_2气体、分闸速度提高至8.7 m/s时,同一时段内的临界击穿电压上升率提高了2.12倍;绝缘介质为20%C_4F_7N/80%CO_2、速度为8.7 m/s时,提升气室压强至0.55MPa后,临界击穿电压始终大于瞬态恢复电压(TRV),接地开关空载分闸过程有极小可能发生介质绝缘击穿。综合考虑绝缘和液化温度要求,接地开关气室应充0.55 MPa的20%C_4F_7N/80%CO_2,分闸速度选用8.7 m/s。
        Dielectric strength of HSGS on GIL is affected by the dielectric types, retractable speeds and gas chamber pressures. The dynamic changes of the airflow and electric field distribution in the gas chamber were calculated using environmentally friendly C_4F_7N/CO_2 gas as the insulating medium for super class B HSGS on GIL during the no-load opening process. The critical breakdown voltage could be obtained under different mixture ratios, opening speeds and gas chamber pressures based on the gas breakdown criterion, and the situation of dielectric breakdown was analyzed. Considering the liquefaction temperature, the above factors were proposed for meeting the insulation requirements. The results show that besides the gap between the movable and static contacts, the breakdown is also prone to occur in the area between the movable contact and static end shield. When the pressure is 0.45 MPa, the speed is 2.9 m/s, and the opening range is 11 mm, the minimum relative dielectric strength of 20%C_4F_7N/80%CO_2 will be 1.12 times that of 15%C_4F_7N/85%CO_2 and 1.02 times that of SF6. When the gas chamber is filled with 0.45 MPa of 20%C_4F_7N/80%CO_2, the rising rate of the critical breakdown voltage can be improved to 2.12 times during the same period by increasing the speed to 8.7 m/s. When the insulating medium is 20%C_4F_7N/80%CO_2, and the speed is 8.7 m/s, the critical breakdown voltage will always exceed TRV by increasing the pressure to 0.55 MPa, in which the breakdown may hardly occur. Considering insulation and liquefaction temperature requirements, the gas chamber of the switch should be filled with 0.55 MPa of 20%C_4F_7N/80%CO_2 and the opening speed is selected as 8.7 m/s.
引文
[1]李鹏,颜湘莲,王浩,等.特高压交流GIL输电技术研究及应用[J].电网技术,2017,41(10):3161-3167.LI Peng,YAN Xianglian,WANG Hao,et al.Research and application of UHVAC gas-insulated transmission line[J].Power System Technology,2017,41(10):3161-3167.
    [2]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7.SHU Yinbiao,HU Yi.Research and application of the key technologies of UHV AC transmission line[J].Proceedings of the CSEE,2007,27(36):1-7.
    [3]肖登明,焦俊韬,YAN Jiudun.环保型绝缘气体的灭弧能力分析[J].高电压技术,2016,42(6):1681-1687.XIAO Dengming,JIAO Juntao,YAN Jiudun.Arc quenching characteristics analysis of environmental-friendly insulation gases[J].High Voltage Engineering,2016,42(6):1681-1687.
    [4]周文俊,郑宇,杨帅,等.替代SF6的环保型绝缘气体研究进展与趋势[J].高压电器,2016,52(12):8-14.ZHOU Wenjun,ZHENG Yu,YANG Shuai,et al.Research progress and trend of SF6 alternative with environment friendly insulation gas[J].High Voltage Apparatus,2016,52(12):8-14.
    [5]KIEFFEL Y,IRWIN T,PONCHON P,et al.Green gas to replace SF6in electrical grids[J].IEEE Power&Energy Magazine,2016,14(2):32-39.
    [6]KIEFFEL Y,IRWIN T,PONCHON P,et al.Characteristics of g3-an alternative to SF6[C]∥24th International Conference&Exhibition on Electricity Distribution.Glasgow,UK:[s.n.],2017:54-57.
    [7]KIEFFEL Y,BIQUEZ F.SF6 alternative development for high voltage switchgears[C]∥Electrical Insulation Conference.Ann Arbor,USA:IEEE,2015:379-383.
    [8]李兴文,邓云坤,姜旭,等.环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J].高电压技术,2017,43(3):708-714.LI Xingwen,DENG Yunkun,JIANG Xu,et al.Insulation performance and application of environment-friendly gases mixtures of C4F7N and C5F10O with CO2[J].High Voltage Engineering,2017,43(3):708-714.
    [9]JOHN D A.Computational fluid dynamics[M].New York,USA:Mc Graw-Hill Education,1995:18-43.
    [10]林莘,苏安,李学斌,等.基于实际气体Redlich-Kwong方程的SF6断路器开断特性[J].高电压技术,2018,44(3):704-710.LIN Xin,SU An,LI Xuebin,et al.Interruption features in SF6 circuit breaker based on real gas Redlich-Kwong equation[J].High Voltage Engineering,2018,44(3):704-710.
    [11]钟建英,赵晓民,李宝增,等.基于SRK状态方程的SF6/CF4混合气体物性参数计算[J].高压电器,2016,52(12):48-53.ZHONG Jianying,ZHAO Xiaomin,LI Baozeng,et al.Calculation of material properties of SF6/CF4 gas mixture based on SRK state equation[J].High Voltage Apparatus,2016,52(12):48-53.
    [12]童景山.流体的热物理性质[M].北京:中国石化出版社,1996:229-234.TONG Jingshan.Thermal physical properties of gas and fluid[M].Beijing,China:China Petrochemical Press,1996:229-234.
    [13]董新法,方利国,陈砺.物性估算原理及计算机计算[M].北京:化学工业出版社,2006:195-196.DONG Xinfa,FANG Liguo,CHEN Li.Physical property estimation principle and computer computation[M].Beijing,China:Chemical Industry Press,2006:195-196.
    [14]王连鹏,王尔智,刘海峰,等.SF6断路器空载介质恢复特性数值模拟中的耦合计算方法[J].电工技术学报,2007,22(6):59-64.WANG Lianpeng,WANG Erzhi,LIU Haifeng,et al.Coupling calculation method for numerical simulation of dielectric recovery property of SF6 circuit breaker under no-load breaking[J].Transactions of China Electrotechnical Society,2007,22(6):59-64.
    [15]吴其,刘晓明,邹积岩,等.采用响应面法-几何特征模拟电荷法的电场数值求解及精度验证[J].高电压技术,2018,44(6):2060-2066.WU Qi,LIU Xiaoming,ZOU Jiyan,et al.Numerical solution and accuracy validation of electric field using response surface methodology and geometric feature charge simulation method[J].High Voltage Engineering,2018,44(6):2060-2066.
    [16]林莘.现代高压电器技术[M].2版.北京:机械工业出版社,2006:323-334.LIN Xin.The modern high voltage electrical technology[M].2rd ed.Beijing,China:Mechanical Industry Press,2006:323-334.
    [17]林莘,李鑫涛,王飞鸣,等.触头烧损对SF6断路器介质恢复特性的影响[J].高电压技术,2014,40(10):3125-3134.LIN Xin,LI Xintao,WANG Feiming,et al.Dielectric recovery characteristics of SF6 circuit breaker considering contact burning loss[J].High Voltage Engineering,2014,40(10):3125-3134.
    [18]林莘,李璐维,李鑫涛,等.高压SF6/N2混合气体断路器冷态介质恢复特性计算分析[J].中国电机工程学报,2018,38(15):1-10.LIN Xin,LI Luwei,LI Xintao,et al.Calculation and analysis on cold state dielectric recovery characteristics in SF6/N2 high voltage circuit breakers[J].Proceedings of the CSEE,2018,38(15):1-10.
    [19]厉伟,腾云,庚振新,等.高电压工程[M].北京:科学出版社,2011:43-44.LI Wei,TENG Yun,GENG Zhenxin,et al.High voltage engineering[M].Beijing,China:Science Press,2011:43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700