用户名: 密码: 验证码:
高温自蔓延反应合成功能材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress on the Functional Materials Synthesized by High Temperature Self-Propagating Reactions
  • 作者:左蓓璘 ; 刘佩进 ; 张维海 ; 严启龙
  • 英文作者:ZUO Bei-lin;LIU Pei-jin;ZHANG Wei-hai;YAN Qi-long;Science and Technology on Combustion,Thermostructure,and Internal Flow Laboratory,Northwestern Polytechnical University;Xi′an North Huian Chemical Industry Co.,Ltd;
  • 关键词:自蔓延高温反应(SHS) ; 燃烧机理 ; 制备工艺 ; 功能陶瓷 ; 多孔材料 ; 含能材料
  • 英文关键词:self-propagating high-temperature synthesis(SHS);;combustion mechanism;;preparation process;;functional ceramics;;porous materials;;energetic materials
  • 中文刊名:HNCL
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:西北工业大学燃烧热结构与内流场重点实验室;西安北方惠安化学工业有限公司;
  • 出版日期:2018-06-15 17:02
  • 出版单位:含能材料
  • 年:2018
  • 期:v.26;No.152
  • 基金:国家自然科学基金面上项目(51776176)
  • 语种:中文;
  • 页:HNCL201806019
  • 页数:8
  • CN:06
  • ISSN:51-1489/TK
  • 分类号:87-94
摘要
简要总结了自蔓延高温反应(SHS)的国内外发展过程。从SHS前驱体元素体系的组成及SHS产物的应用方向(粉体功能材料、陶瓷材料、涂层材料等)进行了分类阐述,着重分析了未来含能材料在SHS方面的应用。其次,重点分析了适用于不同应用方向SHS材料的点火机制、反应机制、热力学和动力学等理论分析,在此基础上提出绝热温度不是SHS反应唯一判据的新观点。最后,介绍了自蔓延高温反应的燃烧机理,阐明了反应物粒径、球磨参数、反应物压坯压力等工艺参数对SHS反应的影响,同时对SHS技术发展中存在问题进行了分析。
        The development process of self-propagating high-temperature synthesis(SHS)at home and abroad was briefly summarized.The components of the element system of SHS precursor and the application direction of SHS products(powdered functional materials,ceramic materials,coating materials)were classified and expounded and the application of future energetic materials in SHS was emphatically analyzed.Secondly,the theoretical analysis of ignition mechanism,reaction mechanism,thermodynamics and kinetics of SHS materials suitable for different application directions was emphatically analyzed.On this basis,a new viewpoint that the adiabatic temperature was not the only criterion of SHS reaction was proposed.Finally,the combustion mechanism of SHS was introduced and the effects of experimental conditions such as particle sizes of reactants,milling parameters and pressed compact pressure of reactants on the SHS reactions were clarified.At the same time,the problems in the development of the SHS technology were analyzed.
引文
[1]Borovinskaya I,Levashov E,Maksimov Y,et al.Concise Encyclopedia of Self-Propagating High-Temperature Synthesis[M].ISBN:978-0-12-804173-4,2017:87-89.
    [2]Merzhanov A G,Rogachev A S,Rumanov E N,et al.Influence of Microgravity on Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds[J].Cosmic Research,2001,39(2):210-223.
    [3]Munir Z A.Field effects in self-propagating solid-state synthesis reactions[J].Zeitschrift Für Physikalische Chemie,1998,207(1-2):39-57.
    [4]Merzhanov A G.40years of SHS:A lucky star of a scientific discovery:A presentation with elements of a scientific lecture[M].Bentham Science Publishers Ltd,2012.
    [5]Mccauley J W,Puszynski J A.Erratum to:Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis(SHS)/combustion synthesis(CS):Personal reflections[J].International Journal of Self-Propagating HighTemperature Synthesis,2008,17(2):156-156.
    [6]Munir Z A,Holt J B.The combustion synthesis of refractory nitrides[J].Journal of Materials Science,1987,22(2):710-714.
    [7]Merzhanov A G.Theory and practice of SHS:Worldwide state of the art and the newest results[J].International Journal of Self-Propagating High-Temperature Synthesis,1993,2(2):113-158.
    [8]Bayliss A,Matkowsky B J.Two Routes to Chaos in Condensed Phase Combustion[J].Siam Journal on Applied Mathematics,1990,50(2):437-459.
    [9]Shkadinsky K G,Shkadinskaya G V,Matkowsky B J,et al.Combustion synthesis of a porous layer[J].Combustion Science&Technology,1993,88(3-4):247-270.
    [10]Amosov A P,Luts A R,Ermoshkin A A.Nanostructured aluminum matrix composites of Al-10%TiC obtained in situ by the SHS method in the melt[J].Key Engineering Materials,2016(684):281-286.
    [11]Amosov A P,Fedotov A F,Latukhin E I,et al.TiC-Al interpenetrating composites by SHS pressing[J].International Journal of SelfPropagating High-Temperature Synthesis,2015,24(4):187-191.
    [12]Huang C M,Chao Y Y,Farooque M,et al.Properties and Microstructure of Molybdenum Disilicide-′;-SiAlON Particulate Ceramic Composites[J].Journal of the American Ceramic Society,2010,80(11):2837-2843.
    [13]Hoke D A,Kim D K,Lasalvia J C,et al.Combustion Synthesis/Dynamic Densification of a TiB2CComposite[J].Journal of the American Ceramic Society,1996,79(1):177-182.
    [14]Sytschev A E,Kamynina O K,Umarov L M,et al.Porous Ti-Co alloys and their joining with titanium by SHS cladding[J].International Journal of Self-Propagating High-Temperature Synthesis,2015,24(3):171-173.
    [15]Yi H C,Varma A,A S R,et al.Gravity-Induced Microstructural Nonuniformities during Combustion Synthesis of IntermetallicCeramic Composite Materials[J].Industrial&Engineering Chemistry Research,2014,35(9):2982-2985.
    [16]Sina H,Iyengar S.Studies on the formation of aluminides in heated Nb-Al powder mixtures[J].Journal of Alloys&Compounds,2014(628):9-19.
    [17]Sundaram D S,Puri P,Yang V.Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles[J].Journal of Physical Chemistry C,2013,117(15):7858-7869.
    [18]Vallauri D,Shcherbakov V A,Khitev A V,et al.Study of structure formation in TiC-TiB2-MexOy,ceramics fabricated by SHS and densification[J].Acta Materialia,2008,56(6):1380-1389.
    [19]Amosov A P,Bichurov G V,Kondrat′Eva L A,et al.Nitride nanopowders by azide SHS technology[J].International Journal of SelfPropagating High-Temperature Synthesis,2017,26(1):11-21.
    [20]Mishra S K,Das S K,Sherbacov V.Fabrication of Al2O3-ZrB2,in situ composite by SHS dynamic compaction:A novel approach[J].Composites Science&Technology,2007,67(11-12):2447-2453.
    [21]Baras F,Mukasyan A S,et al.Microstructure development during NiAl intermetallic synthesis in reactive Ni-Al nanolayers:Numerical investigations vs.TEM observations[J].Surface&Coatings Technology,2013,215(215):485-492.
    [22]Nersisyan H H,Lee J H,Won C W.Self-propagating high-temperature synthesis of nano-sized titanium carbide powder[J].Journal of Materials Research,2002,17(11):2859-2864..
    [23]Sharifi H,Hassanzadeh-Tabrizi S A,Davoodi D,et al.Investigation on mechanochemical combustion behavior of Mg-V2O5-Co3O4-C reactive system to synthesize VC-Co nanocomposite powder[J].Ceramics International,2016,42(6):7210-7215.
    [24]Hassanzadeh-Tabrizi S A,Davoodi D,Beykzadeh A A,et al.Fast synthesis of VC and V2C nanopowders by the mechanochemical combustion method[J].International Journal of Refractory Metals&Hard Materials,2015(51):1-5.
    [25]Pampuch R,Stobierski L,Lis J.Synthesis of Sinterable-SiC Powders by a Solid Combustion Method[J].Cheminform,1989,72(8):1434-1435.
    [26]Moskovskikh D O,Lin Y C,Rogachev A S,et al.Spark plasma sintering of SiC powders produced by different combustion synthesis routes[J].Journal of the European Ceramic Society,2015,35(2):477-486.
    [27]Liang Y,Han Z,Zhang Z,et al.Effect of Cu content in Cu-Ti-B4C system on fabricating TiC/TiB2,particulates locally reinforced steel matrix composites[J].Materials&Design,2012(40):64-69.
    [28]Niu J,Suzuki S,Yi X,et al.Fabrication of AlN particles and whiskers via salt-assisted combustion synthesis[J].Ceramics International,2014,41(3):4438-4443.
    [29]Sharivker S Y,Borovinskaya I P,Vishnyakova G A,et al.Morphological and technological characteristics of silicon nitride powder prepared by self-propagating high-temperature synthesis[J].Soviet Powder Metallurgy&Metal Ceramics,1992,31(11):915-920.
    [30]Sharivker S Y,Mamyan S S,Vlasov V A,et al.Activated sintering of silicon nitride powder made by SHS[J].Powder Metallurgy&Metal Ceramics,1995,33(9-10):541-544.
    [31]Nasiri-Tabrizi B,Adhami T,Ebrahimi-Kahrizsangi R.Effect of processing parameters on the formation of TiB2,nanopowder by mechanically induced self-sustaining reaction[J].Ceramics International,2014,40(5):7345-7354.
    [32]amurlu H E,Maglia F.Preparation of nano-size ZrB2,powder by self-propagating high-temperature synthesis[J].Journal of the European Ceramic Society,2009,29(8):1501-1506.
    [33]Musa C,OrrùR,Licheri R,et al.Spark plasma synthesis and densification of TaB2,by pulsed electric current sintering[J].Materials Letters,2011,65(19-20):3080-3082.
    [34]Ko I Y,Park J H,Nam K S,et al.Rapid consolidation of nanocrystalline NbSi2-Si3N4,composites by pulsed current activated combustion synthesis[J].Metals&Materials International,2010,16(3):393-398.
    [35]Agathopoulos S.Influence of synthesis process on the dielectric properties of B-doped SiC powders[J].Ceramics International,2012,38(4):3309-3315.
    [36]Yi X,Zhang W,Akiyama T.Thermal conductivity of-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering[J].Thermochimica Acta,2014(576):56-59.
    [37]Koshiyama M,Sako H,Ohno M,et al.Relationships between Spark Plasma Sintering Temperature and Mechanical Properties of Combustion-Synthesizedα-and-SiAlON[J].Journal of the Japan Institute of Metals,2016,79(4):191-194.
    [38]Ko I Y,Park J H,Yoon J K,et al.ZrSi2-SiC composite obtained from mechanically activated ZrC+3Si powders by pulsed current activated combustion synthesis[J].Ceramics International,2010,36(2):817-820.
    [39]Jin S,Shen P,Zhou D,et al.Self-propagating high-temperature synthesis of nano-TiCx particles with different shapes by using carbon nano-tube as C source[J].Nanoscale Research Letters,2011,6(1):515.
    [40]郜剑英,江莞,王刚.自蔓延高温燃烧合成MoSi2[J].材料科学与工艺,2005,13(6):669-672.GAO Jian-ying,JIANG Wan,WANG Gang.Self-Propagating high-temperature synthesis of MoSi2[J].Materials Science&Technology,2005,13(6):669-672.
    [41]徐勇.MoS2/TiO2复合物的制备及其润滑与催化性能研究[D]合肥:合肥工业大学,2016.XU Yong,The preparation,lubricity and catalytic performance of MoS2/TiO2composite[D].Hefei:Hefei University of Technology,2016.
    [42]Manukyan K V,Rouvimov S,Wolf E E,et al.Combustion synthesis of graphene materials[J].Carbon,2013,62(5):302-311.
    [43]Chakrabarti A,Lu J,Skrabutenas J C,et al.Conversion of carbon dioxide to few-layer graphene[J].Journal of Materials Chemistry,2011,21(26):9491-9493.
    [44]Cunning B V,Pyle D S,Merritt C R,et al.Hydrogen adsorption characteristics of magnesium combustion derived graphene at 77and293K[J].International Journal of Hydrogen Energy,2014,39(12):6783-6788.
    [45]Gromov A A,Chukhlomina L N.2.Combustion synthesis of boron nitride ceramics:fundamentals and applications[M].Nitride ceramics:combustion synthesis and applications.:Wiley-VCH Verlag GmbH&Co.KGaA,2014:49-74,Germany.
    [46]Maschio S,Bachiorrini A,Lucchini E,et al.Synthesis,sintering and thermal expansion of porous low expansion ceramics[J].Journal of the European Ceramic Society,2004,24(13):3535-3540.
    [47]Yeh C L,Wu F S,Chen Y L.Effects ofα-and-Si3N4,as precursors on combustion synthesis of(α+)-SiAlON composites[J].Journal of Alloys&Compounds,2011,509(9):3985-3990.
    [48]Xia M,Ge C,Guo H.Aligned Single-Crystalline-Si3N4,Whiskers Prepared with SHS Process[J].Advanced Engineering Materials,2012,14(3):166-169.
    [49]Esparza AA,Shafirovich E.Mechanically activated combustion synthesis of molybdenum borosilicides for ultrahigh-temperature structural applications[J].Journal of Alloys&Compounds,2016(670):297-305.
    [50]李建伟.Ti3AlC2陶瓷材料的燃烧合成[D].兰州:兰州理工大学,2008.LI Jian-wei.Combustion Synthesis of Ti3 AlC2 Ceramics[D].Lanzhou:Lanzhou University of Technology,2008.
    [51]Ischenko A N,Tabachenko A N,Afanasieva S A,et al.Investigation of Impact Resistance of Protective Barriers Made from Cermets[J].Russian Physics Journal,2016,58(9):1347-1352.
    [52]滕方磊.SHS技术制备多孔TiB2-TiC复相陶瓷的研究[D].济南:山东科技大学,2012.TENG Fang-lei.Study of SHS of porous TiB2-TiC multiphase Ceramic[D].Jinan:Shandong University of Science and Technology,2012.
    [53]Masanta M,Shariff S M,Choudhury A R.Microstructure and properties of TiB2-TiC-Al2O3,coating prepared by laser assisted SHS and subsequent cladding with micro-/nano-TiO2,as precursor constituent[J].Materials&Design,2016(90):307-317.
    [54]Zou B,Tao S,Huang W,et al.Synthesis and characterization of in situ TiC–TiB2,composite coatings by reactive plasma spraying on a magnesium alloy[J].Applied Surface Science,2013,264(1):879-885.
    [55]Chatterjee S,Ganesh P,Palai R,et al.Effect of h-BN addition on the properties of nanostructured Al2O3-TiB2-TiN based coatings developed by combined SHS and laser surface alloying[J].Surface&Coatings Technology,2010,204(11):1702-1709.
    [56]严新炎,孙国雄,张树格.材料合成新技术——自蔓延高温合成[J].材料科学与工程学报,1994(4):11-17.YAN Xin-yan,SUN Guo-xiong,ZHANG Shu-ge.New Technology of Material Synthesis——Self-propagating High-temperature Synthesis[J].Journal of Materials Science and Engineering,1994(4):11-17.
    [57]郑保辉,王平胜,罗观,等.超级铝热剂的研究现状与发展趋势[J].材料导报,2014,28(3):7-11.ZHENG Bao-hui,WANG Ping-sheng,LUO Guan,et al.Research Prospect and Development Tendency on Super Thermites[J].Material Guide,2014,28(3):7-11.
    [58]Frankhouser W L,Brendley K W,Kieszek M C,et al.Gasless Combustion Synthesis of Refractory Compounds[M].Noyes Publications Park Ridge Nj,1985.
    [59]Munir Z A,Anselmi-Tamburini U.Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion[J].Materials Science Reports,1989,3(7):277-365.
    [60]王建江,杜心康,付永信,等.Ti-B4C-C系在火焰喷涂时的SHS过程[J].稀有金属材料与工程,2006,35(8):1258-1262.WANG Jian-Jiang,DU Xin-kang,FU Yong-xin,et al.SHS process of Ti-B4C-C during flame spraying[J].Rare Metal Materials and Engineering,2006,35(8):1258-1262.
    [61]Munir Z A,Anselmi-Tamburini U.Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion[J].Materials Science Reports,1989,3(7):277-365.
    [62]Philpot K A,Munir Z A,Holt J B.An investigation of the synthesis of nickel aluminides through gasless combustion[J].Journal of Materials Science,1987,22(1):159-169.
    [63]马淑芬.自蔓延高温合成Ti3AlC2的结构形成机理研究[D].兰州:兰州理工大学,2009.MA Shu-fen.Structure-forming mechanism of self-propagating high-temperature synthesis of Ti3AlC2[D].Lanzhou:Lanzhou University of Technology,2009.
    [64]Rogachev A S,Mukas′Yan A S.Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products(Review)[J].Combustion Explosion&Shock Waves,2015,51(1):53-62.
    [65]Rogachev A S,Mukasyan A S,Varma A.Volume Combustion Modes in Heterogeneous Reaction Systems[J].Journal of Materials Synthesis&Processing,2002,10(1):31-36.
    [66]Garkol D A,Gulyaev P Y,Evstigneev V V,et al.A new highspeed brightness pyrometry method to investigate self-propagating high-temperature synthesis[J].Combustion Explosion&Shock Waves,1994,30(1):72-76.
    [67]Zenin A A,Merzhanov A G,Nersisyan G A.Thermal wave structure in SHS processes[J].Combustion Explosion&Shock Waves,1981,17(1):63-71.
    [68]Kim J S,Lagrange T,Reed B W,et al.Imaging of transient structures using nanosecond in situ TEM.[J].Science,2008,321(5895):1472-5.
    [69]Levashov E A,Pogozhev Y S,Potanin A Y,et al.Self-propagating hightemperature synthesis of advanced ceramics in the Mo-Si-B system:Kinetics and mechanism of combustion and structure formation[J].Ceramics International,2014,40(5):6541-6552.
    [70]Varma A.289184Solution Combustion Synthesis of Advanced Materials:Principles and Applications[C]∥12AIChE Annual Meeting.2012.
    [71]邹正光.TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社,2002.ZOU Zheng-guang.Self-propagating High-temperature Synthesis Of TiC/Fe Composites And Its Application[M].Beijing:Industry of Metallurgical Industry Press,2002.
    [72]Varma A,Rogachev A S,Mukasyan A S,et al.Combustion Synthesis of Advanced Materials:Principles and Applications[J].Korean Journal of Chemical Engineering,2004,21(2):527-536.
    [73]Varma A,Lebrat J P.Combustion synthesis of advanced materials[J].Chemical Engineering Science,1992,47(9):2179-2194.
    [74]Munir Z A,Anselmi-Tamburini U.Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion[J].Materials Science Reports,1989,3(7):277-365.
    [75]Shiriev A A,Mukasyan A S.Thermodynamics of SHS Processes[M].Concise Encyclopedia of Self-Propagating High-Temperature Synthesis,2017:385-387.
    [76]Fischer S H,Grubelich M C.Theoretical energy release of thermites,intermetallics,and combustible metals[C]∥At the 24th International Pyrotechnics Seminar,Monterey,CA.Publishing source:Office of Scientific&Technical Information Technical Reports,July 1998.
    [77]Su X,Fu F,Yan Y,et al.Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J].Nature Communications,2014,DOI:10.1038/ncomms5908.
    [78]赵金龙.几种自蔓延高温合成新技术及其应用基础研究[D].大连:大连理工大学,2002.ZHAO Jin-long.Several new technologies for self-propagating high-temperature synthesis and their application foundations[D].Dalian:Dalian University of Technology,2002.
    [79]姜妮.自蔓延高温合成LaB_6粉体[D]武汉:武汉理工大学,2010.JIANG Ni.Self-propagating high-temperature synthesis of LaB_6powder[D].Wuhan:Wuhan University of Technology,2010.
    [80]张鹏林.镁热剂反应自蔓延高温合成TiB和ZrB陶瓷及其结构宏观动力学研究[D].兰州:兰州理工大学,2008.ZHANG Peng-Lin.Microstructure and Kinetics of TiB and ZrB Ceramics Produced by Self-propagating High-temperature Synthesis of Magnesitic Agents[D].Lanzhou:Lanzhou University of Technology,2008.
    [81]郑保辉,王平胜,罗观,等.超级铝热剂的研究现状与发展趋势[J].材料导报,2014,28(3):7-11.ZHENG Bao-hui,WANG Ping-sheng,LUO Guan,et al.Research Status and Development Trend of Super Aluminizers[J].Material Review,2014,28(3):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700