用户名: 密码: 验证码:
考虑不同影响因素的砂岩损伤特征及其卸荷破坏细观特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties
  • 作者:王宇 ; 艾芊 ; 李建林 ; 邓华锋
  • 英文作者:WANG Yu;AI Qian;LI Jian-lin;DENG Hua-feng;Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education,China Three Gorges University;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydro-power Research;Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University;
  • 关键词:岩石力学 ; 损伤变量 ; 三维形貌扫描 ; 形貌特征参数
  • 英文关键词:rock mechanics;;damage variable;;3D morphology scanning;;morphology characteristic parameters
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:三峡大学三峡库区地质灾害教育部重点实验室;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室;三峡大学防灾减灾湖北省重点实验室;
  • 出版日期:2018-09-07 11:41
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.301
  • 基金:湖北省自然科学基金项目(No.2017CFB605);; 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金(No.IWHR-SKL-201513);; 国家自然科学基金项目(No.51309142,No.51439003);; 防灾减灾湖北省重点实验室(三峡大学)开放研究基金项目(No.2016KJZ15)~~
  • 语种:中文;
  • 页:YTLX201904013
  • 页数:10
  • CN:04
  • ISSN:42-1199/O3
  • 分类号:108-117
摘要
实际赋存环境中损伤岩体普遍存在,选取典型砂岩进行蠕变、饱水损伤模拟,进行不同影响因素作用下的岩样损伤变量分析计算,并进行不同影响因素作用下的损伤砂岩卸荷破坏试验,利用ST400型三维表面形貌仪对损伤砂岩卸荷破坏表面进行形貌特征参数对比分析,探讨蠕变、饱水损伤对卸荷破坏面形貌变化影响机制。通过损伤变量分析表明:弹性模量法能较好地反映不同影响因素作用下的岩样损伤程度;而超声波检测法对水敏感性强,不能准确描述蠕变劣化岩样饱水后的损伤程度。不同损伤程度试样卸荷破坏面形貌高度特征参数及分形参数分析表明:蠕变、饱水损伤增加了破坏面的整体粗糙程度,使破坏面形貌的离散性和波动性较大;蠕变、饱水损伤导致试样破坏面形貌平整度较低、各向异性显著,且分形维数随着试样由负损伤向正损伤转化出现先减小后增大的趋势;对比分析两组试样可知,蠕变损伤后的饱水作用对试样破坏面形貌特征影响不显著,蠕变损伤仍起控制作用。
        Considering the universal existance of damaged rock mass in the actual environment, the typical sandstone was selected to investigate the creep and saturation induced damage. The damage variable analysis and calculationunder different influence factors were carried out. Based on unloading failure tests on damaged sandstone samples under different influence factors, the morphological characteristics of the unloading failure surfaces were compared and analyzed by using ST400 type 3 D surface topography instrument,and the influencing mechanism of creep and saturation induced damage on the morphology of the unloading failure surface was discussed. The damage variable analysis shows that the elastic modulus method can well reflect the damage degree under different influence factors, while the ultrasonic detection method is sensitive to saturation and incapable to describe the damage degree of sandstone after creep and saturation. Morphology characteristic and fractal characteristic of the unloading failure surfaces from specimens with different damage degree show that the creep and saturation damage increases the overall roughness of the unloading failure surface, which makes the dispersion and fluctuation of the failure surface become larger. Meanwhile, the creep and saturation damage results in low roughness and obvious anisotropy of the failure surface and the fractal dimension decreases first and then increases with the damage changes from negative to positive. Compared analysis of two group specimens shows that saturation after creep damage has no significant influence on morphological characteristics of the unloading failure surface, which means that creep damage is the main influence factor.
引文
[1]PUSCH R,STANDFORS R.Zone of disturbance around blasted tunnels at depth[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Absrracts,1992,29(5):447-456.
    [2]朱珍德,朱明礼,杨子良,等.红山窑船闸红砂岩初始损伤细观特性量化研究[J].地下空间与工程学报,2008,4(4):630-634.ZHU Zhen-de,ZHU Ming-li,YANG Zi-liang,et al.Quantification studies on initial damage microcosmic characteristics of red sandstone from Hongshanyao ship lock[J].Chinese Journal of Underground Space and Engineering,2008,4(4):630-634.
    [3]邱士利,冯夏庭,张传庆,等.不同初始损伤和卸荷路径下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2012,31(8):1686-1697.QIU Shi-li,FENG Xia-ting,ZHANG Chuan-qing,et al.Experimental research on mechanical properties of deep marble under different initial damage levels and unloading paths[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1686-1697.
    [4]刘新荣,刘俊,李栋梁,等.不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J].岩土力学,2017,38(11):3081-3088.LIU Xin-rong,LIU Jun,LI Dong-liang,et al.Experimental research on the effect of different initial unloading levels on mechanical properties of deep-buried sandstone[J].Rock and Soil Mechanics,2017,38(11):3081-3088.
    [5]任建喜,葛修润,蒲毅彬,等.岩石单轴细观损伤演化特性的CT实时分析[J].土木工程学报,2000,33(6):99-104.REN Jian-xi,GE Xiu-run,PU Yi-bin,et al.Real-time CTtest on the meso-damage evolution of rock under uniaxial compression[J].China Civil Engineering Journal,2000,33(6):99-104.
    [6]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.MIAO Xie-xing,CHEN Zhi-da.A creep damage equation for rocks[J].Acta Mechanica Solida Sinica,1995,16(4):343-346.
    [7]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报(自然科学版),2000,1(3):1-5.JIN Feng-nian,FAN Hua-lin.Study of nonlinear rheology damage property of rock[J].Journal of PLA University of Science and Technology(Natural Science Edition),2000,1(3):1-5.
    [8]康永刚,张秀娥.岩石蠕变的非定常分数伯格斯模型[J].岩土力学,2011,32(11):3237-3241.KANG Yong-gang,ZHANG Xiu-e.Nonstationary parameter fractional Burgers model of rock creep[J].Rock and Soil Mechanics,2011,32(11):3237-3241.
    [9]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.FAN Qing-zhong,GAO Yan-fa.Experimental study on creep properties of rocks under step loading[J].Chinese Journal of Geotechnical Engineering,2005,27(11):1273-1276.
    [10]谭玉林,李树清.基于围压增量的岩石峰后蠕变试验研究[J].矿业工程研究,2015,30(1):1-6.TAN Yu-lin,LI Shu-qing.Experimental study of post-peak creep of rock based on confining pressure increment[J].Mineral Engineering Research,2015,30(1):1-6.
    [11]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002:18-29.XIA Cai-chu,SUN Zong-qi.Engineering mechanics of rock joints[M].Shanghai:Tongji University Press,2002:18-29.
    [12]邾继贵,王浩,任同群,等.便携式激光扫描三维形貌测量系统[J].机械工程学报,2005,41(2):166-169.SHU Ji-gui,WANG Hao,REN Tong-qun,et al.Portable laser scanning system for 3D contour measure[J].Chinese Journal of Mechanical Engineering,2005,41(2):166-169.
    [13]陈瑜,曹平,浦成志,等.水-岩作用对岩石表面微观形貌影响的试验研究[J].岩土力学,2010,31(11):3452-3458.CHEN Yu,CAO Ping,PU Cheng-zhi,et al.Experimental study of effect of water-rock interaction on micto-topography of rock surface[J].Rock and Soil Mechanics,2010,31(11):3452-3458.
    [14]曹平,宁果果,范祥,等.不同温度的水岩作用对岩石节理表面形貌特征的影响[J].中南大学学报(自然科学版),2013,44(4):1510-1516.CAO Ping,NING Guo-guo,FAN Xiang,et al.Influence of water-rock interaction on morphological characteristic of rock joint surface at different temperatures[J].Journal of Central South University(Science and Technology),2013,44(4):1510-1516.
    [15]周辉,程广坦,朱勇,等.基于三维扫描和三维雕刻技术的岩石结构面原状重构方法及其力学特性[J].岩土力学,2018,39(2):417-425.ZHOU Hui,CHENG Guang-tan,ZHU Yong,et al.A new method to originally reproduce rock structural plane by integrating 3D scanning and 3D carving techniques and mechanical characteristics of reproduced structural planes[J].Rock and Soil Mechanics,2018,39(2):417-425.
    [16]李方全,张伯崇,苏恺之.三峡坝区水库诱发地震研究--茅坪钻孔的现场测试与分析[M].北京:地震出版社,1993.LI Fang-quan,ZHANG Bo-chong,SU Kai-zhi.Reservoir induced earthquake risk in the Three Gorges dam area:in situ tests in borehole at Maoping an analysis[M].Beijing:Seismological Press,1993.
    [17]王宇,李建林,邓华锋,等.软岩三轴卸荷流变力学特性及本构模型研究[J].岩土力学,2012,33(11):3338-3344.WANG Yu,LI Jian-lin,DENG Hua-feng,et al.Investigation on unloading triaxial rheological mechanical properties of soft rock and its constitutive model[J].Rock and Soil Mechanics,2012,33(11):3338-3344.
    [18]郭印同,赵克烈,孙冠华,等.周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学,2011,32(5):1353-1359.GUO Yin-tong,ZHAO Ke-lie,SUN Guan-hua,et al.Experimental study of fatigue deformation and damage characteristics of salt rock under cyclic loading[J].Rock and Soil Mechanics,2011,32(5):1353-1359.
    [19]长江水利委员会长江科学院.SL264-2001水利水电工程岩石试验规程[S].北京:中国水利水电出版社,2001.Changjiang River Scientific Research Institute of Changjiang Water Resources Commission.SL264-2001Water conservancy and hydropower engineering specification for rock tests[S].Beijing:China Water&Power Press,2001.
    [20]邓华锋,原先凡,李建林,等.饱水度对砂岩纵波波速及强度影响的试验研究[J].岩石力学与工程学报,2013,32(8):1625-1631.DENG Hua-feng,YUAN Xian-fan,LI Jian-lin,et al.Experimental research on influence of saturation degree on sandstone longitudinal wave velocity and strength[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(8):1625-1631.
    [21]KAWAMOTO T.Deformation and fracturing behaviour of discontinuous rock mass damage mechanics theory[J].International Journal for Numerical and Analytical Methods in Geomechanics,1988,12(1):1-30.
    [22]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.YANG Geng-she,ZHANG Chang-qing.Rock mass damage and its test[M].Xi'an:Shaanxi Science and Technology Press,1998.
    [23]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1):30-34.ZHANG Quan-sheng,YANG Geng-she,REN Jian-xi.New study of damage variable and constitutive equation of rock[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(1):30-34.
    [24]LEMAITRE J.How to use damage mechanics[J].Nuclear Engineering&Design,1984,80(1):233-245.
    [25]赵明阶,吴德伦.单轴受荷条件下岩石的声学特性模型与实验研究[J].岩土工程学报,1999,21(5):540-545.ZHAO Ming-jie,WU De-lun.Ultrasonic properties of rock under loading and unloading:theoretical model and experimental research[J].Chinese Journal of Geotechnical Engineering,1999,21(5):540-545.
    [26]RUSQVIST J,BARR D,DATTA R.Coupled thermal hydrological-mechanical analyses of the Yucca mountain drift scale test:comparison of filed measurement to predictions of four different numerical models[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(5-6):680-697.
    [27]CLARKE K C.Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J].Computer and Geosciences,1986,12(5):713-722.
    [28]曹平,贾洪强,刘涛影,等.岩石节理表面三维形貌特征的分形分析[J].岩石力学与工程学报,2011,30(增刊2):3839-3843.CAO Ping,JIA Hong-qiang,LIU Tao-ying,et al.Fractal analysis of three-dimensional topography characteristics of rock joint surface[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Suppl.2):3839-3843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700