用户名: 密码: 验证码:
纳米金刚石(ND)增强ZK60镁基复合材料压缩变形织构演变规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of compressive deformation texture of nano-diamond reinforced ZK60 magnesium matrix composites
  • 作者:李尚鹏 ; 王金辉 ; 金培鹏
  • 英文作者:LI Shang-peng;WANG Jin-hui;JIN Pei-peng;Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University;
  • 关键词:纳米金刚石 ; ZK60镁合金 ; 高温压缩 ; 织构演变
  • 英文关键词:nano-diamond;;ZK60 magnesium alloy;;hot compression;;texture evolution
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:青海大学新型轻合金重点实验室,青海省轻金属合金及深加工工程技术研究中心;
  • 出版日期:2019-02-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.224
  • 基金:国家自然科学基金(51661028);; 青海省科技项目资助(2017-ZJ-Y17)
  • 语种:中文;
  • 页:JSCL201902003
  • 页数:6
  • CN:02
  • ISSN:11-4545/TG
  • 分类号:20-25
摘要
使用粉末冶金法及热挤压制备了纳米金刚石(ND)增强ZK60镁基复合材料(ND/ZK60),利用热-力模拟仪Gleeble 3500测试了其在不同变形温度(150、200、300和350℃)和应变速率(1、0.1、0.01和0.001 s~(-1))下的真应力-应变曲线;使用X射线衍射仪(XRD)测试了ND/ZK60镁基复合材料在变形温度为300℃及不同应变速率下的基面织构。结果表明:ND/ZK60镁基复合材料的真应力-应变曲线在不同变形温度和应变速率下发生了4个典型的阶段,且随着变形温度的升高和应变速率的减小,加工硬化现象逐渐减弱。变形温度为300℃时,挤压态的复合材料(0002)基面织构比不同应变速率下的复合材料基面织构强,且基面织构随着应变速率的减小而逐渐减弱。
        Nano-diamond(ND) reinforced ZK60 magnesium matrix composites(ND/ZK60)were prepared by powder metallurgy and hot extrusion, and the true stress-strain curves of the composites at different deformation temperatures(150,200,300 and 350 ℃) and strain rates(1, 0.1, 0.01 and 0.001 s~(-1)) were measured by a Gleeble 3500 thermal-force simulator. The basic texture of the ND/ZK60 magnesium matrix composites at deformation temperature of 300 ℃ and different strain rates was measured by X-ray diffractometer(XRD). The results show that the true stress-strain curves of the ND/ZK60 magnesium matrix composites take place in four typical stages at different deformation temperatures and strain rates, and work hardening gradually decreases with the increase of deformation temperature and the decrease of strain rate. When the deformation temperature is 300 ℃, the(0002) basal texture of the as-extruded composites is stronger than that of the composites at different strain rates, and the basic texture decreases with the decrease of the strain rate.
引文
[1] Xiao P,Gao Y M,et al.Microstructure,mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles[J].Materials Science and Engineering A,2018,710 (5):251-259.
    [2] 丁文江,靳丽,吴文祥,等.变形镁合金中的织构及其优化设计[J].中国有色金属学报,2011,21 (10):2371-2381.DING Wen-jiang,JIN Li,WU Wen-xiang,et al.Texture and texture optimization of wrought Mg alloy[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2371-2381.
    [3] Turan M E,Sun Y,Akgul Y.Mechanical,tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy[J].Journal of Alloys and Compounds,2018,740(5):1149-1158.
    [4] 王敏,王守仁,王砚军,等.ZK60 镁合金热压变形和退火中的组织与织构演变[J].材料热处理学报,2010,31 (6):95-101.WANG Min,WANG Shou-ren,WANG Yan-jun,et al.Evolution of microstructure and texture of ZK60 magnesium alloy during hot compression and annealing[J].Transaction of Materials and Heat Treatment,2010,31 (6):95-101.
    [5] 李淑波,郑明毅,甘为民,等.SiCW/AZ91 镁基复合材料及 AZ91镁合金的高温变形行为[J].复合材料学报,2005,22 (3):103-108.LI Shu-bo,ZHENG Ming-yi,GAN Wei-min,et al.Hot deformation behavior of SiCW/AZ91 magensium matrix composite and AZ91 alloy[J].Acta Materiae Compositae Sinica,2005,22 (3):103-108.
    [6] 王晓军.搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究[D].哈尔滨:哈尔滨工业大学,2008.WANG Xiao-jun.Study on hot deformation behavior of SiC particulate reinforced magnesium matrix momposites fabricated by stir casting[D].Harbin:Harbin Institute of Technology,2008.
    [7] 刘筱,朱必武,李落星,等.挤压态AZ31镁合金热变形过程中的孪生和织构演变[J].中国有色金属学报,2016,26 (2):288-295.LIU Xiao,ZHU Bi-wu,LI Luo-xing,et al.Twinning and texture evolution in extruded AZ31 magnesium alloy during hot deformation[J].The Chinese Journal of Nonferrous Metals,2016,26 (2):288-295.
    [8] Hu G S,Zhang D F,Dong Y F,et al.Microstructures and mechanical propertied of as-extruded and heat treated Mg-6Zn-1Mn-4Sn-1.5Nd alloy[J].Transactions of Nonferrous Metals Society of China,2015,25(5):1439-1445.
    [9] Wang T,Jiang L,Mishra R K,et al.Effect of Ca addition on the intensity of the rare earth texture component in extruded magnesium alloys[J].Metallurgical and Materials Transactions A,2014,45(10):4698-4709.
    [10] 王忠堂,严操,宋广胜,等.AZ31 镁合金压缩变形微观织构演变规律[J].稀有金属材料与工程,2012,41(2):221-225.WANG Zhong-tang,YAN Cao,SONG Guang-sheng,et al.Microtexture evolvement of AZ31 magnesium alloy during compressing[J].Rare Metal Materials and Engineering,2012,41(2):221-225.
    [11] Du X,Du D B,Wang Z H,et al.Ultra-high strengthening efficiency of grapheme nanoplatelets reinforced magnesium matrix composites[J].Materials Science and Engineering A,2018,711:633-642.
    [12] Mohamed A.Afifi,Wang Y C,et al.Characterization of precipitates in an Al-Zn-Mgalloy processed by ECAP and subsequent annealing[J].Materials Science and Engineering A,2018,712(17):146-156.
    [13] Yoo M H,Agnew S R,Morris J R,et al.Non-basal slip systems in HCP metals and alloys:source mechanisms[J].Materials Science and Engineering A,2001,319(15):87-92.
    [14] 周珊珊.SiCp/AZ91镁基复合材料及AZ91镁合金的高温变形行为[J].机械工程师,2017(8):87-91.ZHOU Shan-shan.Hot deformation behavior of SiCp/AZ91magnesium matrix composites and AZ91 magnesium alloys[J].Mechanical Engineer,2017(8):87-91.
    [15] Deng K K,Li J C,Xu F J,et al.Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite[J].Materials and Design,2015,67(15):72-81.
    [16] Raghunath B K,Raghukandan K,Karthikeyan R,et al.Flow stress modeling of AZ91 magnesium alloys at elevated temperature[J].Journal of alloys and compounds,2011,509(15):4992-4998.
    [17] 刘勇,朱景川,王洋,等.XRD 线形傅氏分析方法研究 TA15 合金热压缩变形后的位错[J].稀有金属材料与工程,2008,37(9) 1505-1509.LIU Yong,ZHU Jing-chuan,WANG Yang,et al.Research on dislocations for hot compressively deformed TA15 alloy by X-ray diffraction method and a profile analysis Theory[J].Rare Metal Materials and Engineering,2008,37(9):1505-1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700