用户名: 密码: 验证码:
天然有机物对水中氧化石墨烯凝聚的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of natural organic matters on aggregation of graphene oxide in aqueous systems
  • 作者:方华 ; 章婷婷 ; 于江华 ; 赵怡
  • 英文作者:FANG Hua;ZHANG Tingting;YU Jianghua;ZHAO Yi;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology;Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control;
  • 关键词:氧化石墨烯 ; 天然有机物 ; 电解质 ; 凝聚 ; DLVO
  • 英文关键词:graphene oxide;;natural organic matter;;electrolyte;;aggregation;;DLVO
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:南京信息工程大学环境科学与工程学院大气环境与装备技术协同创新中心;江苏省大气环境监测与污染控制高技术研究重点实验室;
  • 出版日期:2019-06-05 11:50
  • 出版单位:环境化学
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(41401546)资助~~
  • 语种:中文;
  • 页:HJHX201906006
  • 页数:7
  • CN:06
  • ISSN:11-1844/X
  • 分类号:49-55
摘要
在比较不同片径氧化石墨烯(graphene oxide, GO)稳定性的基础上,研究了3种典型天然有机物对水中GO凝聚的影响.结果表明,不同片径的GO在水中均呈现较强的电负性,小片径GO可更为稳定的分散.电解质加入可降低GO表面电位,诱发纳米颗粒间碰撞凝聚.水中GO的凝聚过程符合胶体稳定性(DLVO)理论,可分为扩散控制凝聚和反应控制凝聚两个不同阶段.Ca~(2+)可通过吸附电中和机制进一步降低GO表面电位,具有更强的促凝聚作用.天然有机物的存在可抑制GO的凝聚;与海藻酸钠相比,富里酸和腐殖酸易被GO吸附,抑制凝聚的能力更强.Ca~(2+)与腐殖酸间可发生配位桥连作用,形成尺寸较大的产物,强化GO凝聚的快速进行.不同天然有机物与GO和电解质间存在着复杂的相互作用关系,对水中GO凝聚的影响存在着较大的差异.
        Based on the comparison of the stability of graphene oxide(GO) with different diameters, the effects of three typical natural organic matters(NOM) on the aggregation of GO in aqueous systems were investigated. A strong electronegativity appeared in all the GO samples, meanwhile, the smaller diameters the more stable for the GO samples. Electrolytes induced the GO aggregation by depressing the surface potential. The aggregation of GO was divided into two stages of diffusion limited aggregation and reaction limited aggregation, which were consistent with classic Derjaguin-Landau-Verwey-Overbeek(DLVO) theory. Ca~(2+) had a stronger effect to promote GO aggregation than Mg~(2+), because Ca~(2+) could further reduce the surface potential of GO through charge neutralization. The presence of NOM inhibited the aggregation of GO by electrolytes. Fulvic acid(FA) and Humic acid(HA), which were easily adsorbed by GO, showed stronger inhibition on GO aggregation than alginate. Nevertheless, the coordination bridge between Ca~(2+) and HA resulted in the formation of larger size products which could accelerate the aggregation of GO. The effects of various NOM on GO aggregation were different, due to the complicated interactions among NOM, GO and electrolytes in aqueous systems.
引文
[1] 任文杰,滕应.石墨烯的环境行为及其对环境中污染物迁移归趋的影响[J].应用生态学报,2014,25(9):2723-2732.REN W J,TENG Y.Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment[J].Chinese Journal of Applied Ecology,2014,25(9):2723-2732 (in Chinese).
    [2] LEE D W,SEO J W,FELIX L L,et al.The structure of graphite oxide:Investigation of its surface chemical groups[J].Journal of Physical Chemistry B,2010,114(17):5723-5728.
    [3] SCHIRINZI G F,PéREZ-P I,SANCHíS J,et al.Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J].Environmental Research,2017,159:579-587.
    [4] SINGH S K,SINGH M K,NAYAK M K,et al.Thrombus inducing property of atomically thin graphene oxide sheets[J].ACS Nano,2011,5(6):4987-4996.
    [5] MU L,GAO Y,HU X.Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms.[J].Environmental Science & Technology,2016,50(16):8530-8537.
    [6] ARVIDSSON R,MOLANDER S,SANDEN B A,et al.Review of potential environmental and health risks of the nanomaterial graphene[J].Human and Ecological Risk Assessment,2013,19(4):873-887.
    [7] GUPTA K,KHATRI O P.REDUCED graphene oxide as an effective adsorbent for removal of malachite green dye:Plausible adsorption pathways[J].J Colloid Interface Sci,2017,501:11-21.
    [8] CHOWDHURY I,DUCH M C,MANSUKHANI N D,et al.Deposition and release of grapheme oxide nanomaterials using a quartz crystal microbalance[J].Environmental Science & Technology,2014,48(2):961-969.
    [9] TAN P,SUN J,HU Y,et al.Adsorption of Cu2+,Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J].Journal of Hazardous Materials,2015,297:251-260.
    [10] XU L,DUAN L,CHEN W.Carbon nanomaterials:Their environmental behavior and effects on the transport and fate of pollutants in environment[J].Chinese Journal of Applied Ecology,2009,20(1):205-212.
    [11] WANG H,ZHAO X,HAN X,et al.Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution[J].Science of the Total Environment,2017,586:817-826.
    [12] PALMIERI V,BUGLI F,LAURIOLA M C,et al.Bacteria meet graphene:Modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy[J].ACS Biomaterials Science & Engineering,2017,3(4):619-627.
    [13] CHEN K L,ELIMELECH M.Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J].Langmuir,2006,22(26):10994-11001.
    [14] WU L,LIU L,GAO B,et al.Aggregation kinetics of graphene oxides in aqueous solutions:Experiments,mechanisms,and modeling[J].Langmuir,2013,29(49):15174-15181.
    [15] TANG H,ZHAO Y,YANG X,et al.New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek Theory[J].Environmental Science & Technology,2017,51(17):9674-9682.
    [16] DEGUCHI S,ALARGOVA A R,TSUJII K,et al.Stable dispersions of fullerenes,C60 and C70,in water.Preparation and characterization[J].Langmuir,2001,17(19):6013-6017.
    [17] FERIANCIKOVA L,XU S.Deposition and remobilization of graphene oxide within saturated sand packs[J].Journal of Hazardous Materials,2012,235-236(2):194-200.
    [18] 方华,沈冰冰,荆洁,等.水中C60纳米颗粒的稳定性研究[J].环境科学,2014,35(4):1337-1342.FANG H,SHENG B B,JING J,et al.Stability of C60 nanoparticles in aquatic systems[J].Environmental Science,2014,35(4):1337-1342 (in Chinese).
    [19] 方华,孙宇心,荆洁,等.水中多壁碳纳米管的凝聚动力学[J].环境化学,2015,34(2):347-351.FANG H,SUN Y X,JING J,et al.Aggregation kinetics of multi-walled carbon nanotubes in aquatics system[J].Environmental Chemistry,2015,34(2):347-351(in Chinese).
    [20] XIE B,XU Z,GUO W,et al.Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J].Environmental Science & Technology,2008,42(8):2853-2859.
    [21] ALAMOUDI A S.Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes:A review[J].Desalination,2010,259(1):1-10.
    [22] K?RDEL W,MANOS D,LINTELMANN J,et al.The importance of natural organic material for environmental processes in waters and soils (Technical Report)[J].Pure & Applied Chemistry,1997,69(7):1571-1600.
    [23] BORBA P A A,PINOTTI M,CAMPOS C E M D,et al.Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs[J].Carbohydrate Polymers,2016,137:350-359.
    [24] WANG X,SHU L,WANG Y,et al.Sorption of peat humic acids to multi-walled carbon nanotubes[J].Environmental Science & Technology,2011,45(21):9276-9283.
    [25] TAN X,FANG M,LI J,et al.Adsorption of Eu(Ⅲ) onto TiO2:Effect of pH,concentration,ionic strength and soil fulvic acid[J].Journal of Hazardous Materials,2009,168(1):458-465.
    [26] CHEN K L,ELIMELECH M.Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J].Journal of Colloid and Interface Science,2007,309(1):126-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700