用户名: 密码: 验证码:
截面积突然扩大的胶束减阻流的紊流基本特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fundamental Characteristics of Drag-reducing Micelle Solution Turbulent Flow Across Abrupt Expansion Pipe
  • 作者:蔡书鹏 ; 汪志能 ; 李丹
  • 英文作者:CAI Shupeng;WANG Zhineng;LI Dan;School of Mechanical Engineering, Hunan University of Technology;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;
  • 关键词:胶束 ; 突扩 ; 紊流基本特性
  • 英文关键词:micelle;;abrupt expansion;;turbulence fundamental characteristics
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:湖南工业大学机械工程学院;武汉大学水资源与水电工程科学国家重点实验室;
  • 出版日期:2019-02-27 09:16
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金资助项目(51476051)
  • 语种:中文;
  • 页:JXXB201904029
  • 页数:7
  • CN:04
  • ISSN:11-2187/TH
  • 分类号:243-249
摘要
为揭示胶束减阻水溶液突扩流的紊流基本特性,对质量分数分别为1×10~(-4)、4×10~(-4)的季铵盐CTAB稀薄水溶液通过一个横截面积比为1∶4的突扩管的流动局部阻力、阻力发展及压力分布特性进行了试验研究。结果显示,胶束减阻突扩流在紊流基本特性上与高分子减阻剂完全不同。当突扩进口流的雷诺数小于1.2倍的临界值时,突扩局部阻力损失系数以小于10%的量级小于纯水,压力恢复最大值大于纯水;当突扩来流大于1.2倍的临界值雷诺数时,突扩局部阻力损失略大于纯水,而压力恢复最大值与纯水基本相同。突扩进口为具有一定减阻效果的胶束减阻流,在突扩下游再次形成充分发展流所需要的压力恢复长度远大于纯水。突扩进口为暂时失去减阻效果的1×10~(-4)稀液流,于下游粗管内再次恢复稳定的减阻能力需要110倍下游管径。胶束稀液突扩流的上述紊流基本特性与胶束聚合结构的形成特性有关。
        To reveal the fundamental characteristics of a drag-reducing micelle solution flowing turbulently in a suddenly expended pipe, the expansion loss coefficients, drag development and pressure distributions have been investigated experimentally in an expansion pipe with an area ratio of 1∶4, using two weight concentrations of 1×10~(-4) and 4×10~(-4) of hexadecyl trimethyl ammonium bromide solutions. The drag-reducing micelle solutions in abruptly expanded pipes are different from drag-reducing polymer solutions in turbulent fundamental characteristics. At inlet Reynolds numbers of less than 1.2 times of the critical value, the pressure recovery maximum is greater than that for water, and the expansion loss coefficient is order of 90% of that for water, while at inlet Reynolds numbers greater than 1.2 times of the critical value, it is almost the same as for water, and the expansion loss coefficient is slightly above that for water. Furthermore, the pressure recovery length required to regain a fully developed flow in the expansion pipe is well above that for water. For the 1×10~(-4) concentration of micelle solutions lost its drag-reducing ability in the upstream, 110 times of the downstream pipe diameter is necessary for recovering a fully developed drag-reducing flow. It can be concluded that these characteristics are associated with the reforming time characteristics of the micelle shear-induced structure.
引文
[1]REIS L,OLIVEIRA I,PIRES R,et al.Influence of structure and composition of polyacrylamide propylene oxide copolymers on drag reduction of aqueous dispersions[J].Colloids and Surfaces Physicochemical and Engineering Aspects,2015,502(5):121-129.
    [2]GASLJEVIS K,HOYER K,MATTYS E.Intentional mechanical degradation for heat transfer recovery in flow of drag-reducing surfactant solutions[J].Experimental Thermal and Fluid Science,2017,84(6):251-265.
    [3]WEI J,WANG J,ZHANG C,et al.Combined effects of temperature and Reynolds number on drag-reducing characteristics of a cationic surfactant solution[J].The Canadian Jorunal of Chemical Engineering,2012,90(5):1304-1309
    [4]蔡书鹏,罗斌文,彭高.氯化钠对添加剂水溶液低雷诺数减阻效果的影响[J].机械工程学报,2016,52(24):164-169.CAI Shupeng,LUO Binwen,PENG Gao.Influence of Na Cl on the drag-reducing effects in low Reynolds number flow with additive drag reducers[J].Journal of Mechanical Engineering,2016,52(24):164-169.
    [5]TAMANO S,MORINISHI Y,TAGA K.Drag reduction and degradation of nonionic surfactant solutions with organic acid in turbulent pipe flow[J].Journal of Non-Newtonian Fluid Mechanics,2015,215(2):1-7
    [6]蔡书鹏,鈴木洋,菰田悦之.一个非离子表面活性剂水溶液的管流减阻与它的流变特性[J].中国科学,E,2012,42(4):388-394.CAI Shupeng,HIZUKI Hiroshi,KOMODA Yishiyuki.Drag-reduction of a nonionic surfactant aqueous solution and its rheological characteristics[J].Science China Technological Sciences,2012,42(4):388-394.
    [7]KAWAGUCHI Y,SAGAWA T,Feng Ziping.Experimental study on drag-reducing channel flow with surfactant additives-spatial structure of the turbulence investigated by PIV[J].International Journal of Heat and Fluid Flow,2004,23(5):700-709.
    [8]PAK B,CHOI Y,CHOI S.Turbulent hydrodynamic behavior of a drag-reducing viscoelastic fluid in a sudden-expansion pipe[J].Journal of Non-Newtonian Fluid Mechanics,1991,39(3):353-373.
    [9]NOROUZI M,SHAHBANI Z.et al.A numerical study on pressure losses in asymmetric viscoelastic flow through symmetric planar gradual expansions[J].European Journal of Mechanics,B/Fluids,2017,65(4):199-212.
    [10]LI PW,KAWAGUCHI Y,YABE A.Transitional heat transfer and turbulent characteristics of drag-reducing flow through a contracted channel[J].Journal of Enhanced Heat Transfer,2001,8(1):23-40.
    [11]今尾茂樹,小里泰章,田中敏ら.界面活性剤水溶液の急拡大のながれ[J].日本機械学会論文集.B編,2011,67(658):1319-1324.IMAO S,KOZATO Y,TAHARA T,et al.Flow of Drag-reducing surfactant solutions through a sudden expansion pipe[J].JSME,B series,2011,67(658):1319-1324.
    [12]焦利芳,董泳,苏文涛,等.表面活性剂溶液在不规则管件内的湍流减阻特性[J].节能技术,2009,153(1):7-14.JIAO Lifang,DONG Yong,SU Wentao.Turbulent drag reduction characteristics of surfactant solution in irregular tubing unit[J].Energy Conservation Technology,2009,153(1):7-14.
    [13]CAI Shupeng.Drag reduction and its shear stress relaxation characteristics of a cationic surfactant solution[J].Journal of Hydrodynamics,2012,24(2):202-206.
    [14]SUZUKI H,FULLER G,USUI H.Development characteristics of drag-reducing surfactant solution flow in a duct[J].Rheol Acta,2004,43(4):232-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700