用户名: 密码: 验证码:
7050合金固溶后在180~250℃等温淬火时的析出行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precipitation Behavior of 7050 Alloy During Isothermal Quenching at 180~250 °C Following Solid-solution Treatment
  • 作者:康雷 ; 赵刚 ; 田妮
  • 英文作者:Kang Lei;Zhao Gang;Tian Ni;Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University;
  • 关键词:7050合金 ; 等温淬火 ; 回归再时效 ; 析出行为 ; 电导率 ; 硬度
  • 英文关键词:7050 aluminum alloy;;isothermal quenching;;retrogression and reaging treatment;;precipitation behavior;;electrical conductivity;;hardness
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:东北大学材料各向异性与织构教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:“十三五”国家重点研发计划(2016YFB0300801);; 国家自然科学基金青年科学基金(51371045)
  • 语种:中文;
  • 页:COSE201902018
  • 页数:9
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:130-138
摘要
研究了7050合金固溶后在180~250℃等温淬火过程中,合金的电导率、硬度与微观组织之间的关系。结果表明,7050合金在180和200℃等温淬火初期,等温样品的淬火态电导率低于固溶后直接水淬样品;随着等温时间延长,等温样品自然时效态硬度先升后降。7050合金在180℃等温7680 s时,基体内形成GPⅠ区和η¢相;在200℃等温1920s时,基体内形成GPⅠ区和部分GPⅡ区;在250℃等温1920 s时,基体内形成η¢相和S相。合金基体内形成强化相是造成等温淬火初期合金自然时效态硬度上升的主要原因。7050合金固溶后在200℃等温960 s淬火,此时合金T6状态的硬度较固溶后直接水淬样品仅下降3.4%,而电导率上升达9.2%,性能接近回归制度为180℃/1920 s的RRA工艺处理后合金的性能,若将该等温淬火制度作为7050合金板材固溶后水淬前的预处理工艺,可使板材获得较好的综合性能。
        The relationships between electrical conductivity, hardness and microstructure of 7050 alloy during isothermal quenching at 180~250 °C following solid-solution treatment were investigated. Results show that in the initial stage of isothermal quenching at 180 °C and 200 °C, the electrical conductivity of isothermal specimens is lower than that of the specimen directly water quenched after solid-solution treatment, and with the increase of isothermal time, the hardness of isothermal specimens in natural aging temper increases first and then decreases. When isothermally quenching at 180 °C for 7680 s, GPΙ zones and η' phases form in matrix. When isothermally quenching at 200 °C for 1920 s, GPΙ and GPΙΙ zones form in matrix. And when isothermally quenching at 250 °C for 1920 s, η' and S phases form in matrix. The formation of strengthening phases during isothermal quenching is the main reason for the increase in the hardness of specimens under natural aging temper. When 7050 alloy plate is isothermally quenched at 200 °C for 960 s after solid-solution treatment, its T6 temper hardness is only 3.4% lower than that of the directly water quenched plates and its conductivity increases by 9.2%, which is close to the properties of RRA treated plates with a regression regime of 180 °C for 1920 s. Therefore, after solid-solution treatment, isothermal quenching at 200 °C for 960 s as a pre-treatment process will give 7050 alloy plates excellent comprehensive properties.
引文
[1]Williams J C,Starke E A.Acta Materialia[J],2003,51(19):5775
    [2]Marlaud T,Deschamps A,Bley F et al.Acta Materialia[J],2010,58(1):248
    [3]Song R G,Dietzel W,Zhang B J et al.Acta Materialia[J],2004,52(16):4727
    [4]Fang Huachan(方华婵),Chen Kanghua(陈康华),Chao Hong(巢宏)et al.Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J],2009,14(6):351
    [5]Adler P N,Deiasi R,Geschwind G.Metallurgical Transactions[J],1972,3(12):3191
    [6]Wang Lei(王磊),Hui Li(回丽),Zhou Song(周松)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2017,46(4):1115
    [7]Cina B.US Patent,3856584[P],1974
    [8]Angappan M,Sampath V,Ashok B et al.Materials&Design[J],2011,32(7):4050
    [9]Li J F,Birbilis N,Li C X et al.Materials Characterization[J],2009,60(11):1334
    [10]Ning Ailin(宁爱林),Liu Zhiyi(刘志义),Feng Chun(冯春)et al.Chinese Journal of Materials Research(材料研究学报)[J],2008,22(4):357
    [11]Zielinski A,Chrzanowski J,Warmuzek M et al.Materials and Corrosion[J],2004,55(2):77
    [12]Peng G S,Chen K H,Chen S Y et al.Materials Science and Engineering A[J],2011,528(12):4014
    [13]Wang Y L,Pan Q L,Wei L L et al.Materials&Design[J],2014,55:857
    [14]Ohnishi T,Ibaraki Y,Ito T.Materials Transactions Jim[J],1989,30(8):601
    [15]Li Wenbin(李文斌),Pan Qinglin(潘清林),Liu Junsheng(刘俊生)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(9):1646
    [16]Ou B L,Yang J G,Yang C K.Materials Transactions Jim[J],2000,41(7):783
    [17]Rout P K,Ghosh M M,Ghosh K S.Materials Characterization[J],2015,104:49
    [18]Buha J,Lumley R N,Crosky A G.Materials Science and Engineering A[J],2008,492(1-2):1
    [19]Liu Y,Jiang D M,Li B Q et al.Materials&Design[J],2014,57(5):79
    [20]Stiller K,Warren P J,Hansen V et al.Materials Science and Engineering A[J],1999,270(1):55
    [21]Berg L K,Gj?nnes J,Hansen V et al.Acta Materialia[J],2001,49(17):3443
    [22]Quan L W,Zhao G,Gao S et al.Transactions of Nonferrous Metals Society of China[J],2011,21(9):1957
    [23]Chen J Z,Zhen L,Yang S J et al.Transactions of Nonferrous Metals Society of China[J],2010,20(12):2209
    [24]Zang J X,Zhang K,Dai S L.Transactions of Nonferrous Metals Society of China[J],2012,22(11):2638
    [25]Osamura K,Otsuka N,Murakami Y.Philosophical Magazine Part B[J],1982,45(6):583
    [26]Liu Shengdan(刘胜胆),Li Chengbo(李承波),Ouyang Hui(欧阳惠)et al.The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2013,23(4):927
    [27]Shang B C,Yin Z M,Wang G et al.Materials&Design[J],2011,32(7):3818
    [28]Zhang Xinming(张新明),Liu Wenjun(刘文军),Liu Shengdan(刘胜胆)et al.The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2009,19(5):861
    [29]Xiong Baiqing(熊柏青),Li Xiwu(李锡武),Zhang Yongan(张永安)et al.The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2011,21(10):2631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700