用户名: 密码: 验证码:
页岩气超临界等温吸附模型及储量计算优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improved shale gas supercritical isothermal adsorption model and the calculation method of geologic reserve
  • 作者:李英杰 ; 左建平 ; 姚茂宏 ; 刘德军 ; 陈刚
  • 英文作者:LI Yingjie;ZUO Jianping;YAO Maohong;LIU Dejun;CHEN Gang;School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing);Mining engineering institute,Heilongjiang University of Science and Technology;
  • 关键词:页岩 ; 甲烷超临界吸附 ; DA-Langmuir等温吸附模型 ; 吸附特性曲线 ; 地质储量(GIP)
  • 英文关键词:shale;;methane supercritical adsorption;;DA-Langmuir isothermal adsorption model;;adsorption characteristic curve;;gas-in-place(GIP)
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国矿业大学(北京)力学与建筑工程学院;黑龙江科技大学采矿工程学院;
  • 出版日期:2018-08-27 17:35
  • 出版单位:中国矿业大学学报
  • 年:2019
  • 期:v.48;No.227
  • 基金:国家自然科学基金青年基金项目(51604275);; 中央高校基本科研业务费专项资金项目(2016QL02);; 中国矿业大学(北京)越崎杰出学者奖励计划项目
  • 语种:中文;
  • 页:ZGKD201902011
  • 页数:11
  • CN:02
  • ISSN:32-1152/TD
  • 分类号:97-107
摘要
页岩吸附能力研究对评价页岩气资源潜力具有重要意义.论文基于单分子层吸附模型和吸附势理论,建立了考虑页岩微孔、中(大)孔在高压条件下的吸附机理差异的超临界等温吸附模型,构建了微孔滞留率对地质储量影响的gas-in-place(GIP)计算公式,并进行了实例分析.研究结果表明:Dubibin-Astakhov(DA)方程应用于研究页岩微孔吸附机理需要结合吸附势特征曲线进行修正,模型中的虚拟饱和蒸汽压采用改进的Dubinin公式,并采用逐渐增大k值的方法求取最优k值,使得吸附特征能不随温度变化;将微孔吸附气含量部分地计入地质储量,对地质储量GIP公式进行修正,微孔吸附量通过建立的DA-Langmuir等温吸附模型直接获得.该方法考虑了页岩吸附机理,计算结果更加符合实际;改进的储量计算模型表明,微孔吸附气滞留率对浅层页岩气地质储量影响较大,随埋深增加,微孔吸附气滞留率对地质储量影响减小.
        Shale adsorption performance is of great significance for evaluating the potential of shale gas resources.The supercritical isothermal adsorption model based on adsorption potential theory and monolayer adsorption theory was established,with the consideration of the adsorption mechanism for shale micropores,mesopores and macropores under high pressure.The calculation for gas-in-place(GIP)which can reflect the influence of microporous adsorption retention rate was derived,and then field case analysis was carried out.Results show that the Dubibin-Astakhov(DA)equation needs to be corrected by combining the adsorption characteristic curve in order to be applied in adsorption mechanism study,and the kvalue needs to be increased gradually to obtain the optimal value so that the adsorption characteristic energy can be free from the influence of temperature.The microporous adsorption capacity is considered in part in the geological reserves(GIP)calculation as an improvement.Meanwhile,the microporous adsorption capacity can be accessed through the established DA-Langmuir isotherm adsorption model directly.This method considers the shale adsorption mechanism,which can improve the accuracy of the calculation.The improved GIP calculation model shows that the adsorbed gas retention rate of micropores has a great influence on the shallow geological reserve,and less influence on the geological reserve with the increase of the depth.
引文
[1]张玉卓.中国清洁能源的战略研究及发展对策[J].中国科学院院刊,2014,29(4):429-436.ZHANG Yuzhuo.Study on thestrategy and development countermeasure of China clean energy[J].Bulletin of Chinese Academy of Sciences,2014,29(4):429-436.
    [2]BOWKER K A.Barnett Shale gas production,Fort Worth basin:Issues and discussion[J].Aapg Bulletin,2007,91(4):523-533.
    [3]FARAJ B,WILLIAMS H,ADDISON G,et al.Gas potential of selected shale formations in the western Canadian sedimentary basin[J].Gastips,2004,10(1):21-25.
    [4]张金川,边瑞康,荆铁亚,等.页岩气理论研究的基础意义[J].地质通报,2011,30(2):318-323.ZHANG Jinchuan,BIAN Ruikang,JING Tieya,et al.Fundamental significance of gas shale theoretical research[J].Geological Bulletin of China,2011,30(2):318-323.
    [5]周尚文,王红岩,薛华庆,等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J].天然气工业,2016,36(11):12-20.ZHOU Shangwen,WANG Hongyan,XUE Huaqing,et al.Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J].Natural Gas Industry,2016,36(11):12-20.
    [6]CURTIS J B.Fractured shale-gas systems[J].Aapg Bulletin,2002,86(11):1921-1938.
    [7]姜瑞忠,乔欣,何吉祥,等.页岩气地质储量计算新方法[J].天然气地球科学,2016,27(4):699-705.JIANG Ruizhong,QIAO Xin,HE Jixiang,et al.Anew method to calculate shale gas geo-logical reserves[J].Natural Gas Geoscience,2016,27(4):699-705.
    [8]李晓媛,曹峰,岳高凡,等.柴达木盆地东部石炭系页岩吸附特性实验研究[J].地学前缘,2016,23(5):95-102.LI Xiaoyuan,CAO Feng,YUE Gaofan,et al.The experimental study of adsorption characteristics of Carboniferous shale in eastern Qaidam[J].Earth Science Frontiers,2016,23(5):95-102.
    [9]熊健,刘向君,梁利喜,等.页岩气超临界吸附的Dubibin-Astakhov改进模型[J].石油学报,2015,36(7):849-857.XIONG Jian,LIU Xiangjun,LIANG Lixi,et al.Improved Dubibin-Astakhov model for shale-gas supercritical adsorption[J].Acta Petrolei Sinica,2015,36(7):849-857.
    [10]LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,genesis,and distribution of nanometerscale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [11]SCHIEBER J.Commonthemes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic[J].SPE,2010,132370:1-10.
    [12]李贤庆,王哲,郭曼,等.黔北地区下古生界页岩气储层孔隙结构特征[J].中国矿业大学学报,2016,45(6):1172-1183.LI Xianqing,WANG Zhe,GUO Man,et al.Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou[J].Journal of China University of Mining&Technology,2016,45(6):1172-1183.
    [13]CHEN J,WANG F C,LIU H,et al.Molecular mechanism of adsorption/desorption hysteresis:dynamics of shale gas in nanopores[J].ScienceChina(Physics,Mechanics&Astronomy),2017,60(1):14611-14618.
    [14]盛茂,李根生,陈立强,等.页岩气超临界吸附机理分析及等温吸附模型的建立[J].煤炭学报,2014,39(增刊1):179-183.SHENG Mao,LI Gensheng,CHEN Liqiang,et al.Mechanisms analysis of shale-gas supercritical adsorption and modeling of isorption adsorption[J].Journal of China Coal Society,2014,39(Sup 1):179-183.
    [15]侯晓伟,王猛,刘宇,等.页岩气超临界状态吸附模型及其地质意义[J].中国矿业大学学报,2016,45(1):111-118.HOU Xiaowei,WANG Meng,LIU Yu,et al.Supercritical adsorption model of shale gas and its geological significance[J].Journal of China University of Mining&Technology,2016,45(1):111-118.
    [16]周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学(B辑),2000,30(1):49-56.ZHOU Li,LI Ming,ZHOU Yaping.Measurement and theoretical analysis of the adsorption of supercritical methane on super activated carbon[J].Science in China(Series B),2000,30(1):49-56.
    [17]TIAN H,LI T,ZHANG T,et al.Characterization of methane adsorption on overmature Lower SilurianUpper Ordovician shales in Sichuan basin,southwest China:Experimental results and geological implications[J].International Journal of Coal Geology,2016,156:36-49.
    [18]POLANYI M.The Potential Theory of Adsorption[J].Science,1963,141(3585):1010-1013.
    [19]DUBININ M M.ASTAKHOV V A.Development of the concepts of volume filling of microspores in the adsorption of gases and vapors by microporous adsorbents[J].Bulletin of the Academy of Science of the USSR Division of Chemical Science,1971,20(1):3-7.
    [20]ZHAN L,LI K X,ZHANG R,et al.Improvements of the DA equation for application in hydrogen adsorption at supercritical conditions[J].Journal of Supercritical Fluids,2004,28(1):37-45.
    [21]AMANKWAH K A G,SCHWARZ J A.A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation[J].Carbon,1995,33(9):1313-1319.
    [22]PAN Z,CONNELL L D,CAMILLERI M.Laboratory characterization of coal reservoir permeability for primary and enhanced coalbed methane recovery[J].International Journal of Coal Geology,2010,82(3):252-261.
    [23]LU Wang,YU Qingchun.The effect of moisture on the methane adsorption capacity of shales:A study case in the eastern Qaidam basin in China[J].Journal of Hydrology,2016,542:487-505.
    [24]LI Yingjie,LI Xiaoyuan,WANG Yuelong,et al.Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam basin,China[J].Marine and Petroleum Geology,2015,62:44-57.
    [25]郇璇,张小兵,韦欢文.基于不同类型煤吸附甲烷的吸附势重要参数探讨[J].煤炭学报,2015,40(8):1859-1864.HUAN Xuan,ZHANG Xiaobing,WEI Huanwen.Research on parameters of adsorption potential via methane adsorption of different types of coal[J].Journal of China Coal Society,2015,40(8):1859-1864.
    [26]陈方文,卢双舫,丁雪.泥页岩吸附气能力评价模型:以黔南坳陷牛蹄塘组吸附气含量为例[J].中国矿业大学学报,2015,44(3):508-513.CHEN Fangwen,LU Shuangfang,DING Xue.Evaluation model of gas adsorption capacity of shale:Acase of adsorbed gas content from Niutitang formation in Qiannan depression[J].Journal of China University of Mining&Technology,2015,44(3):508-513.
    [27]LUFFEL D L,GUIDRY F K.Newcore analysis methods for measuring reservoir rock properties of devonian shale[J].Journal of Petroleum Technology,1992,44(11):1184-1190.
    [28]BRUNS B,LITTKE R,GASPARIK M,et al.Thermal evolution and shale gas potential estimation of the Wealden and Posidonia shale in NW-Germany and the Netherlands:A 3D basin modelling study[J].Basin Research,2016,28(1):209-216.
    [29]AMBROSE R J,HARTMAN R C,DIAZ-CAMPOSM,et al.Shalegas-in-place calculations part I:New pore-scale considerations[J].Spe Journal,2012,17(1):219-229.
    [30]郭为,熊伟,高树生,等.温度对页岩等温吸附/解吸特征影响[J].石油勘探与开发,2013,40(4):481-485.GUO Wei,XIONG Wei,GAO Shusheng,et al.Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas[J].Petroleum Exploration and Development,2013,40(4):481-485.
    [31]WEISHAUPTOVA Z,MEDEK J,KOVAR L.Bond forms of methane in porous system of coalⅡ[J].Fuel,2004,83:1759-1764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700