用户名: 密码: 验证码:
燃煤烟气污染物脱除技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Removal of Pollutants from Coal-fired Flue Gas
  • 作者:吴江 ; MUZVIDZIWA ; Humphroy ; 关昱 ; 张文博 ; 徐凯
  • 英文作者:WU Jiang;MUZVIDZIWA Humphroy;GUAN Yu;ZHANG Wenbo;XU Kai;School of Energy and Mechanical Engineering,Shanghai University of Electric Power;
  • 关键词:燃煤电厂 ; 烟气净化 ; 除尘 ; 脱硫 ; 脱硝 ; 脱汞 ; 催化 ; 光催化
  • 英文关键词:coal-fired power plants;;flue gas purification;;particle removal;;desulfurization;;denitrification;;mercury removal;;catalytic;;photocatalysis
  • 中文刊名:DYXY
  • 英文刊名:Journal of Shanghai University of Electric Power
  • 机构:上海电力学院能源与机械工程学院;
  • 出版日期:2018-06-15
  • 出版单位:上海电力学院学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(51606115);; 上海市自然科学基金(16ZR1413500)
  • 语种:中文;
  • 页:DYXY201803015
  • 页数:6
  • CN:03
  • ISSN:31-1518/TM
  • 分类号:75-80
摘要
烟气除尘技术由静电除尘、袋式除尘,发展到电袋复合除尘。烟气脱硫有干法、半干法、湿法等多种技术,但目前应用最广的仍是石灰石-石膏湿法。电厂烟气脱硝主要采用选择性催化还原技术,其关键在于低负荷、全负荷烟气脱硝催化剂的开发以及催化剂的再生。活性炭喷射是烟气脱汞较为成熟的技术,但其成本高昂,并影响飞灰的综合利用,近年来,催化烟气脱汞技术得到了发展,并取得了一系列成果。多种污染物联合脱除技术可减少单种污染物各自脱除的运行成本,已成为发展趋势。
        In the flue gas pollutants emission reduction technology, the flue gas dust removal technology is developed from electrostatic precipitation and bag dust collection, to the electrostatics fabric filter,wet dust removal, low-low temperature electrostatic precipitator and agglomeration technology. Flue gas desulfurization methods include dry, semi-dry,wet and other technologies,but the most widely used is still limestone-gypsum wet method. Flue gas denitrification technology mainly includes selective non-catalytic reduction( SNCR) and selective catalytic reduction( SCR),etc. SCR flue gas denitrification technologies more widely used in the power plant, the key technologies lie in the developing low load,full load denitration catalyst and catalyst regeneration.Activated carbon injection is a more technology mature of flue gas mercury removal,but its cost is high,and it also affects the comprehensive utilization of fly ash. In recent years,catalysis and other flue gas mercury removal technology has been developed,with a series of results obtained.The combined removal of multiple pollutants can reduce the operating cost of single pollutant removal and it becomes a trend of development.
引文
[1]中华人民共和国国家统计局.中国年鉴统计2015[M].北京:中国统计出版社,2015:2.
    [2]环境保护局,国家质量监督检验检疫总局.火电厂大气污染物排放标准:GB 13223-2011[EB/OL].(2011-07-29)[2018-02-28].https://wenku.baidu.com/view/451b248c680203d8cf2f2404.html.
    [3]王凯,张庆国,田富中.湿法脱硫石膏特性研究进展[J].环境工程,2016,34(增刊1):448-451.
    [4]顾承昱,阚竟生,沈恒根,等.石灰石-石膏湿法烟气脱硫工艺湿量平衡分析与计算[J].环境工程,2015,33(S1):502-505.
    [5]先元华.内压式中空纤维超滤膜污染模型研究[J].环境科学与技术,2015,32(4):166-169.
    [6]兰天.海水法燃煤烟气脱硫中S(Ⅳ)的氧化规律与吸收---催化氧化一体化技术研究[D].杭州:浙江大学,2013.
    [7]刘洁岭,汤争光,陈杰,等.新型生物质活性炭烟气脱硫研究[J].环境科学,2013,34(4):1623-1627.
    [8]刘丹瑶,张成,夏季,等.大容量锅炉炉内喷钙辅助脱硫系统可行性研究[J].热能动力工程,2012,27(4):472-477.
    [9]贾东坡,王明毅,宋魏鑫,等.循环流化床锅炉尾部增湿活化深度脱硫工艺研究[J].电站系统工程,2014,30(5):41-43.
    [10]沈伦,吴国勋,张忠梅,等.单级多喷嘴CFB-FGD技术研究及应用[J].环境工程,2014,32(12):73-75.
    [11]汪建慧.NID循环半干法烟气脱硫装置脱硫效率的分析[J].环境工程,2011,29(增刊1):150-152.
    [12]段守保.300 MW CFB锅炉大气污染物超低排放改造技术研究[J].洁净煤技术,2016,22(6):88-94.
    [13]GAO F,TANG X,YI H.Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J].Chemical Engineering Journal,2017,317:20-31.
    [14]FU S L,SONG Q,YAO Q.Mechanism study on the adsorption and reactions of NH3,NO,and O2 on the CaO surface in the SNCR deNOx process[J].Chemical Engineering Journal,2016,285:137-143.
    [15]周瑞兴,张静,吴江,等.CuO/ZnO纳米复合物的制备及其光催化脱汞的评价[J].上海电力学院学报,2017,33(3):289-294.
    [16]WU J,LI C E,CHENG X T,et al.Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO-TiO2[J].Journal of Industrial&Engineering Chemistry,2016,46:416-425.
    [17]WU J,LI C E,ZHAO X Y,et al.Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-lightdriven CuO-TiO2[J].Journal of Industrial and Engineering Chemistry,2016,176:559-569.
    [18]陈先托,张冲,吴江,等.N-Fe共掺杂BiVO4的制备及其光催化活性的研究[J].上海电力学院学报,2015,31(5):456-460.
    [19]黄永健,周蓉生.大气环境中汞污染的研究进展[J].物探与化探,2002,26(4):296-298.
    [20]WU S,YANG W,ZHAO J,et al.Effects of properties of activated carbon on its activity for mercury removal and mercury desorption from used activated carbons[J].Energ Fuel,2015,29(3):1946-1950.
    [21]ZHAO H,SUN S,JIANG P,et al.Graphitic C3N4 modified by Ni2 P cocatalyst:an efficient,robust and low cost photocatalyst for visible-light-driven H2 evolution from water[J].Chemical Engineering Journal,2017,315:598-607.
    [22]MIMACHI H,TAKAHASHI M,TAKEYA S,et al.Effect of long-term storage and thermal history on gas content of natural gas hydrate pellets under ambient pressure[J].Energ Fuel,2015,29(8):1507-1512.
    [23]WU J,ZHAO Z,HUANG T,et al.Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst[J].Catal Commun,2017,93:62-66.
    [24]程广文,张强,白博峰.一种改性选择性催化还原催化剂及其对零价汞的催化氧化性能[J].中国电机工程学报,2015,35(3):623-630.
    [25]ZHOU Z J,LIU X W,LIAO Z Q,et al.A novel low temperature catalyst regenerated from deactivated SCR catalyst for Hg0 oxidation[J].Chemical Engineering Journal,2016,304:121-128.
    [26]DONG T,CAO S,XU G.Highly efficient and recyclable depth filtrating system using structured kapok filters for oil removal and recovery from wastewater[J].Journal of Hazardous Materials,2017,321:859-867.
    [27]LIU D J,ZHOU W G,Wu J.Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J].Fuel,2017,194:115-122.
    [28]JIANG Z F,JIANG D L,YAN Z X,et al.A new visible light active multifunctional ternary composite based on TiO2-In2O3nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutantand H2 evolution[J].Applied Catalysis B:Environmental,2015,170-171:195-205.
    [29]CHEN C.Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction[J].Acs Nano,2010,4(11):6425-6432.
    [30]ZHOU R,WU J,ZHANG J,et al.Photocatalytic oxidation of gas-phase Hg0 on the exposed reactive facets of BiOI/BiOIO3heterostructures[J].Applied Catalysis B:Environmental,2017,204:465-474.
    [31]QIX M,GU M L,ZHU X Y,et al.Fabrication of BiOIO3nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury[J].Chemical Engineering Journal,2016,285:11-19.
    [32]ZAHNG J,WU J,LU P,et al.The effect of pH on Synthesis of BiOCl and its photocatalytic oxidization performance[J].Materials Letters,2017,186:353-356.
    [33]WU J,CHEN X T,LI C E,et al.Hydrothermal synthesis of carbon spheres-BiOI/BiOIO3 heterojunctions for photocatalytic removal of gaseous Hg0 under visible light[J].Chemical Engineering Journal,2016,304:533-543.
    [34]SUN X M,WU J,LI Q F,et al.Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electronhole pairs[J].Applied Catalysis B:Environmental,2017,218:80-90.
    [35]姜未汀,张艳艳,吴江,等.燃煤烟气污染物NO和Hg的联合脱除[J].华东电力,2011,39(7):1163-1166.
    [36]鲍静静,印华斌,杨林军,等.湿法烟气脱硫系统的脱汞性能研究[J].动力工程学报,2009,29(7):664-670.
    [37]赵毅,陈周燕,汪黎东.湿式烟气脱硫系统同时脱汞研究[J].环境工程学报,2008,2(1):64-69.
    [38]施雪,赵丽丽,吴江,等.生物质活性炭对模拟烟气汞吸附特性的实验研究[J].上海理工大学学报,2013,35(5):435-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700