用户名: 密码: 验证码:
水稻类病斑早衰突变体lmps1的表型鉴定与基因定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phenotypic characterizing and gene mapping of a lesion mimic and premature senescence 1 (lmps1) mutant in rice (Oryza sativa L.)
  • 作者:夏赛赛 ; 崔玉 ; 李凤菲 ; 谭佳 ; 谢园华 ; 桑贤春 ; 凌英华
  • 英文作者:XIA Sai-Sai;CUI Yu;LI Feng-Fei;TAN Jia;XIE Yuan-Hua;SANG Xian-Chun;LING Ying-Hua;Rice Research Institute of Southwest University/Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops;
  • 关键词:水稻(Oryza ; sativa ; L.) ; 类病斑早衰突变体(lmps1) ; 表型鉴定 ; 基因定位
  • 英文关键词:rice(Oryza sativa L.);;lesion mimic and premature senescence 1(lmps1);;phenotyping;;gene mapping
  • 中文刊名:XBZW
  • 英文刊名:Acta Agronomica Sinica
  • 机构:西南大学水稻研究所/转基因植物与安全控制重庆市重点实验室;
  • 出版日期:2018-09-18 10:24
  • 出版单位:作物学报
  • 年:2019
  • 期:v.45
  • 基金:重庆市社会事业与民生保障科技创新专项项目(cstc2016shms-ztcx80012);; 中央高校基本科研业务费专项资金(XDJK2016A013)资助~~
  • 语种:中文;
  • 页:XBZW201901007
  • 页数:9
  • CN:01
  • ISSN:11-1809/S
  • 分类号:50-58
摘要
经甲基磺酸乙酯(EMS)诱变优良籼型水稻恢复系缙恢10号,获得一个稳定遗传的水稻类病斑早衰突变体lmps1(lesion mimic and premature senescence 1)。该突变体苗期表型正常,分蘖早期出现褐色类病斑,且斑点数目随植株生长而增多,孕穗期叶片开始萎黄衰老。与野生型相比,突变体lmps1的每穗总粒数下降8%(P<0.05),株高、穗长、有效穗数、每穗实粒数、结实率以及千粒重分别下降14.3%、24.3%、27.2%、50%、45.7%与14.5%,差异均达极显著水平(P<0.01)。遮光处理表明,突变体lmps1的类病斑性状受光照诱导。孕穗期叶片光合色素含量下降且光合效率降低, H2O2含量增加,抗氧化酶SOD和CAT的活性显著降低。透射电镜观察结果显示,突变体lmps1叶肉细胞中叶绿体数目减少,叶绿体的类囊体片层结构损伤降解。qRT-PCR结果显示,突变体lmps1中防卫反应相关基因除POX22.3表达量降低外,POC1、PAL、PBZ1、PR1、NPR1、PR5表达量均极显著高于野生型。遗传分析表明突变体lmps1的类病斑早衰性状受1对隐性核基因控制,利用西农1A与突变体lmps1杂交所得F2群体中的突变株,将目标基因定位于第7染色体长臂端粒附近约167.3 kb的物理区段内。
        An elite rice indica restorer line, Jinhui 10 was chemically mutated with ethyl methane sulfonate(EMS). A novel and stable mutant, lesion mimic and premature senescence 1(lmps1) was identified from the descendant library. The growth and development of lmps1 plant was normal at seedling stage, but its leaves began to exhibit brown spots at the beginning of tillering stage, and the number of the spots increased as the plant growing up. When mutant plant entered booting stage, leaves started to wilt and became yellowish, then exhibited premature senescence. Compared with wild type, grains per panicle of lmps1 decreased by 8%, significantly lower than that of wild type(P < 0.05). Besides, plant height, panicle length, effective panicle number, filled grain number per panicle, seed setting rate, and 1000-grain weight of lmps1 correspondingly decreasedly 14.3%, 24.3%, 27.2%, 50.0%, 45.7%, and 14.5%, statistically lower than those of wild type(P < 0.01). The shading treatment suggested that the mutant performance of lmps1 was light induced. Within the cells of lmps1, both of photosynthetic pigment content and photosynthetic efficiency decreased. At the same time, H2 O2 content increased, and activities of protective enzymes, SOD and CAT, reduced in lmps1. The observation by transmission electronic microscope(TEM) demonstrated that chloroplast number reduced in lmps1, and the chloroplast thylakoid lamellar structure seriously damaged and degraded. As a result of qRT-PCR, the expression levels of POC1, PAL, PBZ1, PR1, NPR1, and PR5 were higher in lmps1 than in wild type, while that of POX22.3 was lower than that of wild type. The genetic analysis indicated that the lesion mimic and premature senescence of lmps1 was under the control of a recessive nuclear gene. Mapping result via F2 population derived from the cross between Xinong 1 A and lmps1 showed that, the target gene was located in a 167.3 kb physical interval near the telomere of the long arm of chromosome 7 in rice(Oryza sativa L.).
引文
[1]Johal G S,Hulbert S H,Briggs S P.Disease lesion mimics of maize:a model for cell death in plants.Bio Essays,1995,17:685-692.
    [2]Walbot V.Maize mutants for the 21st century.Plant Cell,1991,3:851-856.
    [3]Persson M,Falk A,Dixelius C.Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1.Mol Plant Pathol,2009,10:587-598.
    [4]Brodersen P,Petersen M,Pike H M,Olszak B,Skov S,Odum N,J?rgensen L B,Brown R E,Mundy J.Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense.Genes Dev,2002,16:490-502.
    [5]Shang J,Tao Y,Chen X,Chen X W,Zou Y,Lei C L,Wang J,Li X B,Zhao X F,Zhang Z K,Xu J C,Cheng Z K,Wan J M,Zhu JM.Identification of a new rice blast resistance gene,Pid3,by genomewide comparison of paired nucleotide-binding siteleucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes.Genetics,2009,182:1303-1311.
    [6]Mori M,Tomita C,Sugimoto K,Hasegawa M,Hayashi N,Dubouzet J G,Ochiai H,Sekimoto H,Hirochika H,Kikuchi S.Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice.Plant Mol Biol,2007,63:847-860.
    [7]Badigannavar A M,Kale D M,Eapen S,Murty G S.Inheritance of disease lesion mimic leaf trait in groundnut.J Hered,2002,93:50-52.
    [8]Huang Q N,Yang Y,Shi Y F,Chen J,Wu J L.Spotted-leaf mutants of rice(Oryza sativa).Rice Sci,2010,17:247-256.
    [9]刘宝玉,刘军化,杜丹,闫萌,郑丽媛,吴雪,桑贤春,张长伟.水稻类病斑突变体spl34的鉴定与基因精细定位.作物学报,2018,44:332-342.Liu B Y,Liu J H,Du D,Yan M,Zheng L Y,Wu X,Sang X C,Zhang C W.Identification and gene mapping of a lesion mimic mutant spl34 in rice(Oryza sativa L.).Acta Agron Sin,2018,44:332-342(in Chinese with English abstract).
    [10]Chern M,Fitzgerald H A,Canlas P E,Navarre D A,Ronald P C.Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light.Mol Plant-Microbe Interact,2005,18:511-520.
    [11]Tang J,Zhu X,Wang Y,Liu L,Xu B,Li F,Fang J,Chu C.Semi-dominant mutations in the CC-NB-LRR-type R gene,NLS1,lead to constitutive activation of defense responses in rice.Plant J,2011,66:996-1007.
    [12]Takahashi A,Agrawal G K,Yamazaki M,Onosato K,Miyao A,Kawasaki T,Shimamoto K,Hirochika H.Rice Pti1a negatively regulates RAR1-dependent defense responses.Plant Cell,2007,19:2940-2951.
    [13]Liao Y X,Bai Q,Xu P Z,Wu T K,Guo D M,Peng Y B,Zhang HY,Deng X S,Chen X Q,Luo M,Ali A,Wang W M,Wu X J.Mutation in rice abscisic acid2 results in cell death,Enhanced disease-resistance,altered seed dormancy and development.Front Plant Sci,2018,9:https://doi.org/10.3389/fpls.2018.00405.
    [14]Sakuraba Y,Rahman M L,Cho S H,Kim Y S,Koh,H J,Yoo S C,Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J,2013,74:122-133.
    [15]Fujiwara T,Maisonneuve S,Isshiki M,Mizutani M,Chen L,Wong H L,Kawasaki T,Shimamoto K.Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice.J Biol Chem,2010,285:11308-11313.
    [16]Sun C,Liu L,Tang J,Lin A,Zhang F,Fang J,Zhang G,Chu C.RLIN1,encoding a putative coproporphyrinogen III oxidase,is involved in lesion initiation in rice.J Genet Genomics,2011,38:29-37.
    [17]Liu X Q,Li F,Tang J Y,Wang W H,Zhang F X,Wang G D,Chu J F,Yan C Y,Wang T Q,Chu C C,Li C Y.Activation of the Jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.PLoS One,2012,7:e50089.
    [18]Wang Z H,Wang Y,Hong X,Hu D H,Liu C X,Yang J,Li Y,Huang Y Q,Feng Y Q,Gong H Y,Li Y,Fang G,Tang H R,Li Y S.Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1(UAP1)induces early leaf senescence and defence responses in rice.J Exp Bot,2015,66:973-987.
    [19]Qiao Y,Jiang W,Lee J,Park B,Choi M S,Piao R,Woo M O,Roh JH,Han L,Paek N C,Seo H S,Koh H J.SPL28 encodes a clathrin-associated adaptor protein complex 1,medium subunit micro 1(AP1M1)and is responsible for spotted leaf and early senescence in rice(Oryza sativa).New Phytol,2010,185:258-274
    [20]Jin B,Zhou X,Jiang B,Gu Z,Zhang P,Qian Q,Chen X,Ma B.Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance.Rice(N Y),2015,8:18.
    [21]Wang L,Pei Z,Tian Y,He C.OsLSD1,a rice zinc finger protein,regulates programmed cell death and callus differentiation.Mol Plant-Microbe Interact,2005,18:375-384.
    [22]Lin A,Wang Y,Tang J,Xue P,Li C,Liu L,Hu B,Yang F,Loake G J,Chu C.Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice.Plant Physiol,2012,158:451-464.
    [23]Yamanouchi U,Yano M,Lin H,Ashikari M,Yamada K.A rice spotted leaf gene,Spl7,encodes a heat stress transcription factor protein.Proc Natl Acad Sci USA,2002,99:7530-7535.
    [24]Zeng L R,Qu S H,Bordeos A,Yang C W,Baraoidan M,Yan H Y,Xie Q,Nahm B H,Leung H,Wang G L.Spotted leaf11,a negative regulator of plant cell death and defense,encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity.Plant Cell,2004,16:2795-2808.
    [25]Fekih R,Tamiru M,Kanzaki H,Abe A,Yoshida K,Kanzaki E,Saitoh H,Takagi H,Natsume S,Undan J R,Undan J,Terauchi R.The rice(Oryza sativa L.)LESION MIMIC RESEMBLING,which encodes an AAA-type ATPase,is implicated in defense response.Mol Genet Genomics,2015,290:611-622.
    [26]Kim J A,Cho K,Singh R,Jung Y H,Jeong S H,Kim S H,Lee JE,Cho Y S,Agrawal G K,Rakwal R,Tamogami S,Kersten B,Jeon J S,An G,Jwa N S.Rice OsACDR1(Oryza sativa accelerated cell death and resistance 1)is a potential positive regulator of fungal disease resistance.Mol Cells,2009,28:431-439.
    [27]Wellburn A R.The spectral determination of chlorophyll-a and chlorophhyll-b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution.J Plant Physiol,1994,144:307-313.
    [28]Fang L K,Li Y F,Gong X P,Sang X C,Ling Y H,Wang X W,Cong Y F,He G H.Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice(Oryza sativa L.).Chin Sci Bull,2010,55:2517-2521.
    [29]Panaud O,Chen X,McCouch S R.Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP)in rice(Oryza sativa L.).Mol Genet Genomics,1996,252:597-607.
    [30]Undan J R,Tamiru M,Abe A,Yoshida K,Kosugi S,Takagi H,Kanzaki H,Saitoh H,Fekih R,Sharma S,Undan J,Yano M,Terauchi R.Mutation in OsLMS,a gene encoding a protein with two double-stranded RNA binding motifs,causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.).Genes Genet Syst,2012,87:169-179.
    [31]Li Z,Zhang Y,Liu L,Liu Q,Bi Z,Yu N,Cheng S,Cao L.Fine mapping of the lesion mimic and early senescence 1(lmes1)in rice(Oryza sativa).Plant Physiol Biochem,2014,80:300-307.
    [32]Xing Y D,Du D,Xiao Y H,Zhang T Q,Chen X L,Feng P,Sang X C,Wang N,He G H.Fine mapping of a new lesion mimic and early senescence 2(lmes2)mutant in rice.Crop Sci,2016,56:1550-1560.
    [33]林艳,陈在杰,田大刚,杨广阔,杨绍华,刘华清,陈松彪,王锋.水稻类病斑及早衰突变体lms1的鉴定及基因初步定位.福建农业学报,2014,29(1):29-34.Lin Y,Chen Z J,Tian D G,Yang G K,Yang S H,Liu H Q,Chen S B,Wang F.Identification and gene mapping of a lesion mimic and senescence mutant lms1 in rice.Fujian J Agric Sci,2014,29(1):29-34(in Chinese with English abstract).
    [34]Jwa N S,Agrawal G K,Tamogami S,Yonekura M,Han O,Iwahashi H,Rakwal R.Role of defense/stress-related marker genes,proteins and secondary metabolites in defining rice self-defense mechanisms.Plant Physiol Biochem,2006,44:261-273.
    [35]Datta K,Velazhahan R,Oliva N,Ona I,Mew T,Khush G S,Muthukrishnan S,Datta S K.Over-expression of the cloned rice thaumatin-like protein(PR-5)gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease.Theor Appl Genet,1999,98:1138-1145.
    [36]Blilou I,Ocampo J A,Garcia-Garrido J M.Induction of Ltp(lipid transfer protein)and Pal(phenylalanine ammonia-lyase)gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae.J Exp Bot,2000,51:1969-1977.
    [37]Ryals J A,Neuenschwander U H,Willits M G,Molina A,Steiner H Y,Hunt M D.Systemic acquired resistance.Plant Cell,1996,8:1809-1819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700