用户名: 密码: 验证码:
再压缩与部分冷却二氧化碳布雷顿循环热效率对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Analysis of Thermal Efficiency of Supercritical Recompression Carbon Dioxide Brayton Cycle Systems and Partial Cooling Systems
  • 作者:赵文升 ; 郑鹏宇 ; 付文锋 ; 王雅倩
  • 英文作者:ZHAO Wensheng;ZHENG Pengyu;FU Wenfeng;WANG yaqian;School of Energy Power and Mechanical Engineering,North China Electric Power University;
  • 关键词:二氧化碳 ; 布雷顿 ; 再压缩 ; 部分冷却 ; 循环效率
  • 英文关键词:carbon dioxide;;Brayton;;recompression;;partial cooling;;cycle efficiency
  • 中文刊名:HBDL
  • 英文刊名:Journal of North China Electric Power University(Natural Science Edition)
  • 机构:华北电力大学能源动力与机械工程学院;
  • 出版日期:2019-05-30
  • 出版单位:华北电力大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.199
  • 基金:国家自然科学基金资助项目(51606066);; 中央高校基本科研业务费专项基金资助项目(2017MS117)
  • 语种:中文;
  • 页:HBDL201903012
  • 页数:7
  • CN:03
  • ISSN:13-1212/TM
  • 分类号:94-100
摘要
随着能源技术的迅速发展,超临界二氧化碳发电相关理论和技术的研究得到了越来越广泛的关注。为了探究各参数变化对热效率的影响,基于超临界再压缩二氧化碳布雷顿循环系统和部分冷却系统,进行热效率对比分析。以初压、初温、分流系数、预压压力和预热温度为变量条件,研究再压缩与部分冷却系统的循环效率变化规律,并对两系统各设备的?损以及系统最佳循环效率进行对比。结果表明,初温初压和分流系数对热效率有较大影响。两系统一定存在最优分流系数使得系统达到最佳效率;在一定条件下,初温越高循环效率越高,而初压越高循环效率先增大后减小。循环系统初温720℃,初压20 MPa以下时,部分冷却系统比再压缩系统拥有更高的循环效率,且回热器和冷凝器拥有较低的?损。
        With the rapid development of energy technology,there has been growing researches on the theory and technology of supercritical carbon dioxide power generation. Aimed at exploring the effect of variable conditions on thermal efficiency,this paper conducted a thermal efficiency comparative analysis based on supercritical recompression carbon dioxide Brayton Cycle system and partial cooling system. This paper observed the cycle efficiency of recompression and partial cooling systems and compared the energy loss and optimal cycle efficiency of the two systems under variable conditions including initial pressure,initial temperature,shunt coefficient,preload pressure and preheating temperature.The results show that there exists an optimal efficiency in both systems with the optimal shunt coefficient,and that under certain conditions,the cycle efficiency increases first and then decreases as the initial temperature increases. With720 ℃ initial temperature of the circulation system and the initial pressure below 20 MPa,certain cooling systems achieve higher cycle efficiency and cause less energy loss of regenerator and condenser than recompression systems do.
引文
[1]王东雷,张鹏. 1200MW等级超超临界机组可行性研究[J].电力建设,2015,36(2):131-136.WANG Donglei, ZHANG Peng. Feasibility Study on1200 MW Ultra-Supercritical Unit[J]. Electric Power Construction,2015,36(2):131-136.
    [2]ANGELINO G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Power,1968,90(3):287-95.
    [3]ISHIYAMA S,MUTO Y,KATO Y,et al. Study of steam,helium and supercritical CO2turbine power generations in prototype fusion power reactor[J]. Progress in Nuclear Energy,2008,50(2):325-32.
    [4]MA YUEGENG,LIU MING, YAN JUNJIE, et al.Thermodynamic study of main compression intercooling effects on Supercritical CO2recompression Brayton cycle[J]. Energy,2017,140:746-756.
    [5]SARKAR J. Second law analysis of supercritical CO2recompression Brayton cycle[J]. Energy, 2009, 34(9):1172-1178.
    [6]DOSTAL,VACLAV. A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology,2004,154(3):265-282.
    [7]CLEMENTONI E M,COX T L,SPRAGUE C P. Startup and operation of a supercritical carbon dioxide brayton cycle[J]. Journal of Engineering for Gas Turbines and Power,2014,136(7):071701.
    [8]方立军,杨雪,张桂英,等.超临界CO2部分冷却布雷顿循环分析[J].电力科学与工程,2017,33(4):43-48.FANG Lijun,YANG Xue,ZHANG Guiying,et al. Exergy Analysis of Supercritical CO2Partial Cooling Brayton Cycle[J]. Electric Power Science and Engineering,2017,33(4):43-48.
    [9]CARDEMIL J M,SILVA A K. Parametrized overview of CO2power cycles for different operation conditions and configurations-an absolute and relativeperformance analysis[J]. Applied Thermal Engineering, 2016,100:146-154.
    [10]JAMALI A,AHMADI P,JAAFAR M N M. Optimization of a novel carbon dioxide cogeneration system using artificial neural network and multi-objective genetic algorithm[J]. Applied Thermal Engineering,2014,64:293-306.
    [11]AHMADI M H,MEHRPOOYA M,POURFAYAZ F.Thermodynamic and exergy analysis and optimization of a transcritical CO2power cycle driven by geothermal energy with liquefied natural gas as its heat sink[J]. Applied Thermal Engineering,2016,109:640-652.
    [12]NAMI H,MAHMOUDI S M S,NEMATI A. Exergy,economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine,a supercritical CO2and an organic Rankine cycle(GT-HRSG/SCO2)[J]. Applied Thermal Engineering,2017,110:1315-1330.
    [13]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,46(2):22-27.CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J]. Thermal Power Generation,2017,46(2):22-27.
    [14]MA YUEGENG,LIU MING, YAN JUNJIE, et al.Thermodynamic study of main compression intercooling effects on Supercritical CO2recompression Brayton cycle[J]. Energy,2017,140:746-756.
    [15]DENG Q H,WANG D,ZHAO H,et al. Study on performances of supercritical CO2,recompression Brayton cycles with multi-objective optimization[J]. Applied Thermal Engineering,2017,114:1335-1342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700