用户名: 密码: 验证码:
表面声道对深海风成噪声垂直空间特性的影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of surface duct on the vertical spatial characteristics of wind-generated noise in deep ocean
  • 作者:蒋光禹 ; 孙超 ; 谢磊 ; 刘雄厚
  • 英文作者:Jiang Guang-Yu;Sun Chao;Xie Lei;Liu Xiong-Hou;School of Marine Science and Technology,Northwestern Polytechnical University;Key Laboratory of Ocean Acoustics and Sensing,Ministry of Industry and Information Technology;State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences;
  • 关键词:水下风成噪声 ; 表面声道 ; 噪声垂直方向性 ; 噪声垂直相关性 ; 简正波
  • 英文关键词:wind-generated noise;;surface duct;;noise vertical directionality;;noise vertical coherence;;normal modes
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北工业大学航海学院;海洋声学信息感知工业和信息化部重点实验室;中国科学院声学研究所声场声信息国家重点实验室;
  • 出版日期:2019-01-04 14:40
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金重点项目(批准号:11534009);国家自然科学基金(批准号:51479169);; 中科院声场声信息国家重点实验室开放课题研究基金(批准号:SKLA201702)资助的课题~~
  • 语种:中文;
  • 页:WLXB201902018
  • 页数:14
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:159-172
摘要
水下风成噪声的垂直空间特性包括噪声垂直方向性和垂直相关性,研究海洋环境对其影响规律对提升声呐性能、增加海洋环境参数反演的准确性具有重要意义.本文利用Pekeris割线下的简正波理论描述噪声的传播过程,研究了深海环境下存在表面声道时,表面声道以下噪声垂直空间特性的变化规律及其原因.研究表明,在临界深度以上,表面声道的存在导致噪声垂直方向性在水平凹槽边缘靠近海底方向上的峰值升高,噪声垂直相关性随垂直距离增加先后周期地向正相干和负相干方向偏移;在临界深度以下,表面声道的存在导致水平方向上的噪声能量增强,噪声垂直相关性整体向正相干方向偏移.当表面声道的参数变化时,表面声道的厚度变化对噪声垂直空间特性影响较大,而表面声道内的声速梯度变化对噪声垂直空间特性几乎没有影响.结合各类简正波的变化分析表明,存在表面声道时,噪声源激发的折射简正波阶数增加,强度增强,是表面声道引起噪声垂直空间特性变化的主要原因.
        Vertical spatial characteristics of the wind-generated noise include the noise vertical directionality and the noise vertical coherence, which seriously affect the performance of sonar devices and play an important role in ocean environment parameters inversion. In this paper, we investigate the influence of surface duct on the noise vertical spatial characteristics at the depths below the duct. The Kuperman-Ingenito(K/I) model is employed to describe the distribution of the noise sources, and Pekeris-branch-cut-based normal modes are used to represent the Green's functions between the noise sources and the receivers. Both the noise vertical directionality and the noise vertical coherence are expressed as a function of the normal modes, so that we can investigate the physical reason for the variance of the noise vertical spatial characteristics by analyzing the variance of the normal modes. The numerical simulations on the noise vertical spatial characteristics show that the influence of surface duct above the critical depth is different from that below the critical depth. Above the critical depth, there exists a peak in the noise vertical directionality at the edge of the horizontal notch close to the bottom side. In the presence of surface duct, this peak significantly rises up, and the noise vertical coherence deviates from that in the absence of surface duct and tends to be perfect positive coherence and perfect negative coherence periodically as the vertical distance between the two receivers increases. On the other hand, below the critical depth, the noise power comes from the horizontal direction becomes stronger and the noise vertical coherence tends to be perfect positive coherence in the presence of surface duct as compared with the case in the absence of surface duct. Moreover, the influence will become severer as the thickness of the surface duct increases, while almost keep unchanged when the sound speed gradient in the surface duct varies. The modal analysis indicates that the noise source excites more refracted normal modes with stronger modal intensity in the presence of surface duct, and the excited refracted normal modes become more and stronger if the surface duct is thicker. As the result, the increase of the refracted mode number and the enhancement of their modal intensity cause the vertical spatial characteristics of noise to change.
引文
[1] Carey W M, Evans R B 2011 Ocean Ambient Noise(New York:Springer)ppl-7
    [2] Waite A D 2002 Sonar for Practising Engineer(Hoboken:John Wiley&Sons)pp 86-89
    [3] Yin B Y, Ma L, Lin J H 2012 Acta Acustia 37 424(in Chinese)[殷宝友,马力,林建恒2012声学学报37 424]
    [4] Jiang P F, Lin J H, Sun J P, Yi X J 2017 Acta Phys. Sin. 66014306(in Chinese)[江鹏飞,林建恒,孙军平,衣雪娟2017物理学报66 014306]
    [5] Chapman N R, Cornish J W 1993 J. Acoust. Soc. Am. 93 782
    [6] Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 ActaAcustia 26 217(in Chinese)[林建恒,常道庆,马力,李学军,蒋国健2001声学学报26 217]
    [7] Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732
    [8] Kuperman W A, Ingenito F 1980 J. Acoust. Soc. Am. 671988
    [9] Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J.Oceanic Eng. 15 324
    [10] Perkins J S, Kuperman W A, Ingenito F, Fialkows L T,Glattere J 1993 J. Acoust. Soc. Am. 93 739
    [11] Hamson R M 1985 J. Acoust. Soc. Am. 78 1702
    [12] Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541
    [13] Rouseff D, Tang D 2006 J. Acoust. Soc. Am. 120 1284
    [14] Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustia 38724(in Chinese)[江鹏飞,林建恒,马力,蒋国健2013声学学报38 724]
    [15] Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin.66 014301(in Chinese)[周建波,朴胜春,刘亚琴,祝捍皓2017物理学报66 014301]
    [16] Buckingham M J 2013 J. Acoust. Soc. Am. 134 950
    [17] Liu S Q, Li F H 2015 Tech. Acoust. 34 143(in Chinese)[刘姗琪,李风华2015声学技术34 143]
    [18] Wang J Y, Li F H 2016 Tech. Acoust. 35 109(in Chinese)[王璟琰,李风华2016声学技术35 109]
    [19] Liu B S, Lei J Y 2010 Principle of Underwater Acoustics(Haerbin:Harbin Engineering University Press)pp26-27(in Chinese)[刘伯胜,雷家煜2010水声学原理(哈尔滨:哈尔滨工程大学出版社)第26—27页]
    [20] Wang D Z, Shang E C 2013 Underwater Acousitcs(Beijing:Science Press)pp24-25(in Chinese)[汪德昭,尚尔昌2013水声学(北京:科学出版社)第24—25页]
    [21] Labianca F M 1973 J. Acoust. Soc. Am. 53 1137
    [22] Urick R J 1975 J. Acoust. Soc. Am. 58 S121
    [23] Pekeris C L 1948 Geol. Soc. Am. Mem. 27 1
    [24] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011Computational Ocean Acoustics(New York:Springer)pp25-26
    [25] Ewing W M, Jardetzkey W S, Press F 1957 Elastic Waves in Layered Media(New York:McGraw-Hill)pp 126-137
    [26] Bartberger C L 1977 J. Acoust. Soc. Am. 61 1643
    [27] Jiang G Y, Sun C, Liu X H, Xie L, Shao X, Kong D Z 2017OCEANS Aberdeen, UK, June 19-22 2017 ppl-6
    [28] Munk W H 1974 J. Acoust. Soc. Am. 55 220
    [29] Duan R 2016 Ph. D. Dissertation(Xi'an:Northwestern Polytechnical University)(in Chinese)[段睿2016博士学位论文(西安:西北工业大学)]
    [30] Cox H 1973 J. Acoust. Soc. Am. 54 1289
    [31] Zhang X, Zhang Y G, Zhang S J, Wu S H 2009 J. Trop.Oceanograph.28 23(in Chinese)[张旭,张永刚,张胜军,吴世华2009热带海洋学报28 23]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700