用户名: 密码: 验证码:
两种深色有隔内生真菌的铅耐受性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lead tolerance of two dark septate endophytes
  • 作者:杨超 ; 谢清哲 ; 楚文卉 ; 冯欢 ; 刘莹 ; 张收霞 ; 王春燕
  • 英文作者:YANG Chao;XIE Qingzhe;CHU Wenhui;FENG Huan;LIU Ying;ZHANG Shouxia;WANG Chunyan;College of Forestry,Northwest A&F University;
  • 关键词:有隔内生真菌 ; 铅耐受性 ; 有机酸
  • 英文关键词:dark septate endophytes;;lead tolerance;;organic acids
  • 中文刊名:XBNY
  • 英文刊名:Journal of Northwest A & F University(Natural Science Edition)
  • 机构:西北农林科技大学林学院;
  • 出版日期:2018-05-25 09:43
  • 出版单位:西北农林科技大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.338
  • 基金:国家自然科学基金项目(31300543);; 西北农林科技大学基本科研创新一般项目(2452013QN108,2452015343);西北农林科技大学引进人才科研启动费项目(Z111021204);; 陕西省专项配套经费项目
  • 语种:中文;
  • 页:XBNY201811015
  • 页数:10
  • CN:11
  • ISSN:61-1390/S
  • 分类号:111-120
摘要
【目的】比较2种深色有隔内生真菌(dark septate endophytes,DSE)Phialocephala fortinii和Phaeoacremonium mortoniae对重金属铅(Pb2+)的耐受性及富集能力,初步分析相关的重金属铅耐受性机制,为DSE在重金属污染区土壤治理和植被修复中的应用提供理论依据。【方法】采用液体摇瓶培养方法,比较不同Pb2+质量浓度(0(对照),300,600,900,1 200mg/L)胁迫下P.fortinii和P.mortoniae的生长状况,测定其培养液pH值和有机酸质量浓度,以及菌丝内Pb2+含量、超氧化物歧化酶(SOD)活性和还原型谷胱甘肽(GSH)、丙二醛(MDA)、可溶性蛋白含量的变化,分析其可能的Pb耐受性机制。【结果】当Pb2+质量浓度为0~1 200mg/L时,2种DSE均有不同程度的生长,P.fortinii的Pb2+半致死浓度(EC50)(951.5mg/L)显著高于P.mortoniae(431.0mg/L)(P<0.05)。随培养液中Pb2+质量浓度的增加,2种DSE菌丝干质量逐渐减小,而菌丝内的Pb2+含量却逐渐升高,P.fortinii的铅富集量逐渐增加,并在Pb2+质量浓度为1 200mg/L达到最大,而P.mortoniae的铅富集量则是先增加后减少,在Pb2+质量浓度为900mg/L达到最大。当Pb2+质量浓度为300~1 200mg/L时,P.fortinii的菌丝干质量和Pb2+富集量均高于P.mortoniae,而菌丝内的Pb2+含量却低于后者。随培养液中Pb2+质量浓度的升高,P.fortinii菌丝的SOD活性和可溶性蛋白含量均先增加后减少,而GSH和MDA含量则逐渐增加,且以上4个指标均在Pb2+质量浓度为600mg/L时达到最大值;P.mortoniae菌丝内的SOD活性以及GSH、MDA和可溶性蛋白含量均先增加后减少,除SOD活性在Pb2+质量浓度300mg/L达到最大值外,其他指标均在Pb2+质量浓度为600mg/L时达到最大值。2种DSE培养液的pH值均随Pb2+质量浓度的升高而下降,从中只检测到草酸和乙酸2种小分子有机酸;2种DSE在供试的Pb2+质量浓度下均能产生草酸,且草酸质量浓度随培养液中Pb2+质量浓度的增加(>300mg/L后)而极显著增大,在Pb2+质量浓度为1 200mg/L时达到最大值(P<0.01),而2种DSE仅在Pb2+质量浓度较高(600~1 200mg/L)时产生乙酸;在Pb2+质量浓度为600~1 200mg/L时,P.fortinii培养液中草酸和乙酸质量浓度都显著高于P.mortoniae(P<0.05)。【结论】2种DSE对铅都有一定的耐受性和富集能力,其中P.fortinii的耐受性和富集能力明显优于P.mortoniae,SOD活性提高以及GSH、可溶性蛋白和小分子有机酸(草酸和乙酸)的大量积累可能是这2种DSE减轻铅毒害、提高铅耐受性的潜在机制之一。
        【Objective】In this study,the lead(Pb)tolerance and enrichment ability of two dark septate endophytes(DSE),Phialocephala fortinii and Phaeoacremonium mortoniae,were compared and the relat-ed lead tolerance mechanisms were preliminarily analyzed to provide basis for the application of DSE in heavy metal pollution control and vegetation restoration.【Method】Under liquid culture condition with different Pb2+mass concentrations(0,300,600,900 and 1 200 mg/L),fungal growth status,pH and organic acids mass concentration in liquid culture medium as well as lead content,superoxide dismutase(SOD)activity,contents of glutathione(GSH),malondialdehyde(MDA)and soluble protein in mycelia were measured and analyzed.The possible mechanisms of lead tolerance were also analyzed and discussed.【Result】With the Pb2+concentration of 0-1 200 mg/L,both DSE grew and the semi-lethal concentration(EC50)of P.fortinii(951.5 mg/L)was significantly higher(P<0.05)than that of P.mortoniae(431.0 mg/L).With the increase of Pb2+concentration,the mycelia dry weight of both DSE gradually reduced,while the Pb2+contents in mycelia increased.The Pb2+enrichment in P.fortiniiincreased gradually and reached the maximum at 1 200 mg/L,while the enrichment in P.mortoniaeincreased firstly and then decreased with the maximum at 900 mg/L.When Pb2+concentration was 300-1 200 mg/L,the dry weight and lead accumulation of P.fortinii were higher than those of P.mortoniae,but Pb2+content in mycelia of P.fortinii was lower than that of P.mortoniae.The SOD activity and soluble protein contents in the mycelia of P.fortinii increased firstly and then decreased with the increase of Pb2+concentration,while GSH and MDA contents gradually increased.All indexes reached the maximum at 600 mg/L.With the increase of Pb2+concentration,SOD activity and contents of GSH,MDA and soluble protein in mycelia of P.mortoniaeincreased firstly and then decreased.All reached the maximum at 600 mg/L except SOD activity,which reached the maximum at 300 mg/L.The pH values of two fungal culture media decreased with the increase of Pb2+concentration,and only oxalic acid and acetic acid were detected.Oxalic acid was detected at all tested concentrations,and its mass concentrations increased significantly with the increase of Pb2+concentrations(300-1 200 mg/L)with the maximum at 1 200 mg/L.Acetic acid was only detected under high Pb2+concentration(600-1 200 mg/L).The contents of both oxalic acid and acetic acid in P.fortinii culture medium were significantly higher(P<0.01)than in P.mortoniae at Pb2+concentration of 600-1 200 mg/L.【Conclusion】Both DSE showed high Pb2+tolerance and accumulation ability,and P.fortinii was better than P.mortoniae.The increase of SOD activity and accumulation of GSH,soluble protein and small molecule organic acids(oxalic acid and acetic acid)may relate with the high Pb2+tolerances.
引文
[1] Aryal M,Liakopoulou-Kyriakides M.Bioremoval of heavy metals by bacterial biomass[J].Environmental Monitoring and Assessment,2015,187(1):1-26.
    [2]雷良奇,陈斯耐,莫家,等.黄沙坪碳酸盐型尾矿中重金属的赋存状态与污染评价[J].岩石矿物学杂志,2015,34(6):844-852.Lei L Q,Chen S N,Mo J,et al.Modes of occurrence and pollution risk of heavy metals within the carbonate type tailings of the Huangshaping Pb Zn ore district[J].Acta Petrologica Et Mineralogica,2015,34(6):844-852.
    [3] Gaur A,Adholeya A.Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils[J].Current Sciences,2004,86(4):528-534.
    [4] Iskandar N L,Zainudin N A,Tan S G.Tolerance and biosorption of copper(Cu)and lead(Pb)by filamentous fungi isolated from a freshwater ecosystem[J].Journal of Environmental Sciences,2011,23(5):824-830.
    [5] Melgar M J,Alonso J,García M A.Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus[J].Science of the Total Environment,2007,385(1):12-19.
    [6]傅晓萍,豆长明,胡少平,等.有机酸在植物对重金属耐性和解毒机制中的作用[J].植物生态学报,2010,34(11):1354-1358.Fu X P,Dou C M,Hu S P,et al.A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J].Chinese Journal of Plant Ecology,2010,34(11):1354-1358.
    [7] Jumpponen A,Trappe J M.Dark septate endophytes:a review of facultative biotrophic root-colonizing fungi[J].New Phytologist,1998,140(2):295-310.
    [8] Likar M,Regvar M.Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L.[J].Plant and Soil,2013,370(1/2):593-604.
    [9]湛方栋.嗜鱼外瓶霉(Exophiala pisciyhila ACCC32496)镉耐性机制研究[D].昆明:云南大学,2012.Zhan F D.Study on the tolerance mechanisms of Exophiala pisciphila ACCC32496for cadmium[D].Kunming:Yunnan University,2012.
    [10]宋瑛瑛,王春燕,杨玉荣,等.铅吸附深色有隔内生真菌的筛选及其吸附特性[J].环境科学学报,2016,36(5):1630-1638.Song Y Y,Wang C Y,Yang Y R,et al.The screening and biosorption characteristics of dark septate endophytes to lead[J].Acta Scientiae Circumstantiae,2016,36(5):1630-1638.
    [11]曹志华,束庆龙,程义明,等.12种农药对油茶炭疽菌的室内毒力测定[J].农药,2012,51(4):304-306.Cao Z H,Shu Q L,Cheng Y M.Toxicity measurement of 12fungicides on Colletotrichun gloeosporioides from Camellia oleifera[J].Agrochemicals,2012,51(4):304-306.
    [12] Cheng X H,Gai Y P,Sun H Y,et al.Zinc tolerance and accumulation characteristics of Cordyceps militaris[J].Acta Ecologica Sinica,2010,30(6):1449-1455.
    [13]徐在超,史亚楠,张仁铎,等.三株具重金属抗性油菜内生真菌对镉铅锌富集特性研究[J].中山大学学报,2016,55(6):153-160.Xu Z C,Shi Y N,Zhang R D,et al.Bioaccumulation of Cd,Zn and Pb by three heavy metal-resistant endophytic fungi isolated from rapes[J].Journal of Sun Yat-sen University,2016,55(6):153-160.
    [14] Zhang J E,Ouyang Y,Ling D J.Impacts of simulated acid rain on cation leaching from the latosol in south China[J].Chemosphere,2007,67(11):21-31.
    [15] Hou W,Chen X,Song G,et al.Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed(Lemna minor)[J].Plant Physiology and Biochemistry,2007,45(1):62-69.
    [16] Zhan F,He Y,Li T,et al.Tolerance and antioxidant response of a dark septate endophytes(DSE),Exophiala pisciphila,to cadmium stress[J].Bulletin of Environmental Contamination and Toxicology,2015,94(1):96-102.
    [17]黄健.废水处理中黄孢原毛平革菌对Cd胁迫的适应性及抗性反应研究[D].长沙:湖南大学,2014.Huang J.Adaptability and resistance of Phanerochaete chrysosporium with Cd(Ⅱ)in wastewater treatment[D].Changsha:Hunan University,2014.
    [18] Fomina M A,Hillier S,Charnock J M,et al.Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica[J].Applied and Environmental Microbiology,2005,71(1):371-381.
    [19]辜夕容,黄建国.铝对外生菌根真菌草酸分泌及磷、钾、铝吸收的影响[J].生态学报,2010,30(2):357-363.Gu X R,Huang J G.Effect of aluminum on growth,oxalate exudation,and uptake of aluminum,phosphorus and potassium by ectomycorrhizal fungi in vitro[J].Acta Ecologica Sinica,2010,30(2):357-363.
    [20]张淑彬,冯固,李晓林.土壤中镉对丛枝菌根真菌Glomus mosseae生长的效应[J].菌物学报,2005,24(4):576-581.Zhang S B,Feng G,Li X L.The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae[J].Mycosystema,2005,24(4):576-581.
    [21]黄志基,黄艺,彭博.铜镉胁迫对两种菌根真菌生长和细胞壁离子交换量的影响[J].环境科学,2006,27(8):1654-1658.Huang Z J,Huang Y,Peng B.Influence of copper,cadmium on growth and cation exchange capacity of two kinds of ectomycorrhizal funguses[J].Environmental Science,2006,27(8):1654-1658.
    [22]冯欢,豆青,王海华,等.2种外生菌根真菌的铅耐受性及相关机制[J].西北林学院学报,2017,32(2):188-196.Feng H,Dou Q,Wang H H,et al.Lead tolerance of two ectomycorrhizal fungi and related mechanisms[J].Journal of Northwest Forestry University,2017,32(2):188-196.
    [23] Khan M S,Zaidi A,Goel R,et al.Biomanagement of metalcontaminated soils[M].Dordrecht:Springer Science&Business Media,2011:225-240.
    [24]张玉洁,李洪超.矿区植物根内嗜鱼外瓶霉对重金属的耐性和超积累作用[J].土壤,2012,44(3):467-473.Zhang Y J,Li H C.Tolerance and accumulation of heavy metals by Exophiala pisciphila strain isolated from plant roots growing in metal polluted soils[J].Soils,2012,44(3):467-473.
    [25]吴琦,季辉,张卫建.土壤铅和镉胁迫对空心菜生长及抗氧化酶系统的影响[J].中国农业科技导报,2010,12(2):122-127.Wu Q,Ji H,Zhang W J.Effects of soil Pb and Cd stresses on the growth and antioxidative enzyme system of swamp cabbage[J].Journal of Agricultural Science and Technology,2010,12(2):122-127.
    [26]王松华,张华,崔元戎,等.镉对灵芝菌丝抗氧化系统的影响[J].应用生态学报,2008,19(6):1355-1361.Wang S H,Zhang H,Cui Y R,et al.Effects of cadmium stress on the antioxidative system in Ganoderma lucidum mycelia[J].Chinese Journal of Applied Ecology,2008,19(6):1355-1361.
    [27] Andrade S A L,Silveira A P D,Mazzafera P.Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil[J].Science of the Total Environment,2010,408(22):5381-5391.
    [28] Xu P,Zeng G,Huang D,et al.Metal bioaccumulation,oxidative stress and antioxidant defenses in Phanerochaete chrysosporiumresponse to Cd exposure[J].Ecological Engineering,2016,87:150-156.
    [29] Garg N,Chandel S.Role of arbuscular mycorrhiza in arresting reactive oxygen species(ROS)and strengthening antioxidant defense in Cajanus cajan(L.)Mills P.nodules under salinity(NaCl)and cadmium(Cd)stress[J].Plant Growth Regulation,2015,75(2):521-534.
    [30]Wójcik M,Skórzyńska-Polit E,Tukiendorf A.Organic acids accumulation and antioxidant enzyme activities in Thlaspi carulescens under Zn and Cd stress[J].Plant Growth Regulation,2006,48(2):145-155.
    [31]楚文卉,谢清哲,杨超,等.1株镉耐受真菌C12的鉴定及其镉耐受性研究[J].西北农林科技大学学报(自然科学版),2017,45(9):71-80.Chu W H,Xie Q Z,Yang C,et al.The identification and study on Cd tolerance of C12,a fungus which shows high tolerance to Cd[J].Journal of Northwest A&F University(Nat Sci Ed),2017,45(9):71-80.
    [32]仝瑞建,刘雪琴.AM真菌对铅胁迫下小麦生长和生化特性的影响[J].西南农业学报,2015,28(4):1578-1582.Tong R J,Liu X Q.Effects of arbuscular mycorrhizal fungus on growth and biochemical characteristics of wheat under Pb stress[J].Southwest China Journal of Agricultural Sciences,2015,28(4):1578-1582.
    [33]魏秀君,殷云龙,芦治国,等.NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性综合评价[J].植物资源与环境学报,2011,20(2):35-42.Wei X J,Yin Y L,Lu Z G,et al.Effects of NaCl stress on growth and physiological indexes of five greening plant seedlings and comprehensive evaluation of their salt tolerance[J].Journal of Plant Resources and Environment,2011,20(2):35-42.
    [34]赵琪琦,徐恒.镉、铅胁迫下长根菇菌丝体中巯基化合物和抗氧化酶系统的变化研究[J].四川大学学报,2014,51(5):1051-1055.Zhao Q Q,Xu H.Explore the changes of thiol compounds and antioxidant enzymes in Oudemansieha radicata mycelium under cadmium and lead stresses[J].Journal of Sichuan University,2014,51(5):1051-1055.
    [35]焦健,李朝周,黄高宝.钴对干旱胁迫下大豆幼苗叶片的保护作用及其机理[J].应用生态学报,2006,17(5):796-800.Jiao J,Li C Z,Huang G B.Protective effects and their mechanisms of cobalton soybean seedling’s leaf under droughts[J].Chinese Journal of Applied Ecology,2006,17(5):796-800.
    [36]黄艺,黄志基.外生菌根与植物抗重金属胁迫机理[J].生态学杂志,2005,24(4):422-427.Huang Y,Huang Z J.Ectomycorrhizae and heavy metals resistance of higher plants[J].Chinese Journal of Ecology,2005,24(4):422-427.
    [37] Vodnik D,Grcman H,Macek I,et al.The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J].Science of the Total Environment,2008,392(1):130-136.
    [38] Fomina M,Hillier S,Charnock J M,et al.Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica[J].Appl Environ Microbiol,2005,71(1):371-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700