用户名: 密码: 验证码:
关于超临界CO_2-Allam循环及燃烧的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Supercritical CO_2-Allam Cycle and Combustion Research
  • 作者:章建徽 ; 张子君 ; 胡羽 ; 田园 ; 祁海鹰
  • 英文作者:ZHANG Jianhui;ZHANG Zijun;HU Yu;TIAN Yuan;QI Haiying;Key Laboratory of Thermal Science and Power Engineering, Ministry of Education, Tsinghua University;Huadian General Light Gas Turbine Equipment Co.Ltd.;
  • 关键词:Allam循环 ; 超临界CO2 ; 工质物性 ; 燃烧特性 ; 材料腐蚀
  • 英文关键词:Allam cycle;;supercritical CO2;;properties of circle fluid;;combustion characteristics;;material corrosion
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:清华大学热科学与动力工程教育部重点实验室;华电通用轻型燃机设备有限公司;
  • 出版日期:2019-07-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.625
  • 语种:中文;
  • 页:ZGDC201914016
  • 页数:18
  • CN:14
  • ISSN:11-2107/TM
  • 分类号:175-192
摘要
Allam循环是以超临界CO_2(s CO_2)为工质、通过燃料和氧气直接燃烧加热的一种新型Brayton循环。为了掌握国内外相关前沿发展动态,综述Allam循环的基本原理、经济性、工质物性、基本燃烧特性和材料腐蚀的研究进展。结果表明,Allam循环在工作压力30MPa、透平进口温度1100℃时的供电效率,比现有的F级燃气轮机天然气联合循环高2.3个百分点,可燃用天然气和煤制合成气,实现完全碳捕集,无NOx等污染物排放,并可与煤气化系统形成新型整体式联合循环;真实气体状态方程SW和LKP方程可分别用于计算纯s CO_2与混合物的状态参数;甲烷在s CO_2气氛中的层流火焰传播速度比在亚临界CO_2/空气混合物中高100倍,随当量比单调升并趋于恒定,不存在富燃料熄火极限;受压力影响显著;现有详细反应动力学机理中的Aramco2.0与USC-II预计更适于描述超临界燃烧特性;超临界CO_2在450℃以上对合金材料的腐蚀性加剧,少量含水有抑制作用;材料中的合金Cr含量是抗腐蚀的关键因素;燃烧室筒壁材料宜用镍基合金,近些年,美国多个国家实验室和公司已完成核电s CO_2循环论证和再压缩循环试验装置,完成天然气及合成气s CO_2燃烧室设计,并通过台架试验,进入50MW(th)天然气电厂示范阶段,我国于2017年启动重点研发计划项目"超高参数高效二氧化碳燃煤发电基础理论与关键技术研究",应在此基础上及早开展Allam循环关键技术基础研究。
        Allam cycle is a new type of Brayton Cycle that uses supercritical CO_2(s CO_2)as working medium and is directly heated by combustion of gaseous fuel and pure oxygen. In order to grasp the newest R&D progress on Allam cycle at home and abroad, different issues such as basic principles,economics, properties of cycle fluid, basic combustion characteristics and material corrosion were reviewed in this paper. It is shown that the power efficiency of Allam cycle under working pressure of 30 MPa and the turbine inlet temperature of 1100℃ is 2.3 percentage points higher than the existing F-class gas turbine natural gas combined cycle. Both natural gas and coal-formed syngas can be burnt in the cycle.Complete carbon capture is realized without NOx emission. It is possible to form an integrated coal gasification combined Allam cycle. The real gas state equations SW and LKP can be used to calculate the state parameters of pure s CO_2 and mixtures, respectively. The laminar flame speed of methane in s CO_2 is 100 times higher in the subcritical CO_2/air mixture, and increases monotonously with equivalence ratio and tends to be constant without the fuel-rich flameout limit. Meanwhile, the speed is significantly affected by pressure. Aramco 2.0 and USC-II among the existing detailed reaction kinetic mechanisms are expected to be more suitable for describing supercritical combustion characteristics. The sCO_2 is more corrosive to the alloy material above 450℃, and a small amount of water has an inhibitory effect. The Cr content in the material is a key factor in corrosion resistance. The Nickel-based alloy should be used for manufacturing casing wall of combustor. In recent years, several national laboratories and companies in USA have completed the nuclear power sCO_2 cycle demonstration and recompression cycle test device, as well as design of natural gas and syngas sCO_2 combustors. A demonstration project of 50 MW(th) natural gas power plant with Allam cycle has been put in operation. The national keyresearch and development project supported by Chinese government "Theoretical Research and Key Technology of High-Efficient Coal-Fired Power Generation in CO_2 with Ultra High Parameters" has been carried out since 2017. Similarly, the research on key technologies of Allam cycle should also get started soon.
引文
[1]Allam R J,Fetvedt J E,Forrest B A,et al.The oxy-fuel,supercritical CO2 Allam Cycle:new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions[C]//ASME Turbo Expo2014:Turbine Technical Conference and Exposition.Düsseldorf,Germany:The American Society of Mechanical Engineers,2014:V03BT36A016.
    [2]Allam R J,Palmer M R,Brown Jr G W,et al.High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions,including carbon dioxide[J].Energy Procedia,2013,37:1135-1149.
    [3]Lu Xijia,Forrest B,Martin S,et al.Integration and optimization of coal gasification systems with a near-zero emissions supercritical carbon dioxide power cycle[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:The American Society of Mechanical Engineers,2016:V009T36A019.
    [4]Feher E G.The supercritical thermodynamic power cycle[J].Energy conversion,1968,8(2):85-90.
    [5]Dostal V,Driscoll M J,Hejzlar P.A supercritical carbon dioxide cycle for next generation nuclear reactors[R].Massachusetts:Massachusetts Institute of Technology,2004.
    [6]Moisseytsev A V,Sienicki J J,Wade D C.Lead-to-CO2heat exchangers for coupling of the STAR-LM LFR to a supercritical carbon dioxide Brayton cycle power converter[C]//12th International Conference on Nuclear Engineering.Arlington,Virginia,USA:The American Society of Mechanical Engineers,2004:403-411.
    [7]Sienicki J J,Moisseytsev A,Cho D H,et al.Supercritical carbon dioxide brayton cycle energy conversion for sodium-cooled fast reactors/advanced burner reactors[C]//Proceedings of Global 2007 Conference on Advanced Nuclear Fuel Cycles and Systems.Boise,Idaho,2007.
    [8]Moisseytsev A,Sienicki J J.Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor[R].Argonne,IL:Argonne National Laboratory,2006.
    [9]Wright S A,Conboy T M,Rochau G E.Supercritical CO2power cycle development summary at Sandia national laboratories[R].Albuquerque,NM,United States:Sandia National Laboratories,2011.
    [10]Brun K,Friedman P,Dennis P.Fundamentals and applications of supercritical carbon dioxide(sCO2)based power cycles[M].Cambridge:Woodhead Publishing,2017.
    [11]Iwai Y,Itoh M,Morisawa Y,et al.Development approach to the combustor of gas turbine for oxy-fuel,supercritical CO2 cycle[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition.Montreal,Quebec,Canada:The American Society of Mechanical Engineers,2015:V009T36A013.
    [12]Sasaki T,Itoh M,Maeda H,et al.Development of turbine and combustor for a semi-closed recuperated Brayton cycle of supercritical carbon dioxide[C]//ASME 2017Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability,the ASME 2017 15th International Conference on Fuel Cell Science,Engineering and Technology,and the ASME 2017 Nuclear Forum.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V001T02A008.
    [13]Abdul-Sater H,Lenertz J,Bonilha C,et al.A CFDsimulation of coal syngas oxy-combustion in a high-pressure supercritical CO2 environment[C]//ASMETurbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V04AT04A051.
    [14]吴闯,王顺森,王兵兵,等.超临界二氧化碳布雷顿循环燃煤发电系统仿真研究[J].中国电机工程学报,2018,38(21):6360-6366.Wu Chuang,Wang Shunsen,Wang Bingbing,et al.Simulation research on coal-fired power generation system using a supercritical carbon dioxide Brayton cycle[J].Proceedings of the CSEE,2018,38(21):6360-6366(in Chinese).
    [15]刘明,张旭伟,王朝阳,等.集成SCO2动力循环的燃煤电站余热回收系统研究[J].工程热物理学报,2017,38(8):1613-1618.Liu Ming,Zhang Xuwei,Wang Chaoyang,et al.Study on heat recovery system of coal-fired power plant integrated with SCO2 power cycle[J].Journal of Engineering Thermophysics,2017,38(8):1613-1618(in Chinese).
    [16]褚辉,王迅,李成宇,等.烟气余热驱动的CO2超临界循环优化及分析[J].化学工程,2017,45(12):6-10.Chu Hui,Wang Xun,Li Chengyu,et al.Improvement and analysis of CO2 super-critical cycle using waste gas from flue gas[J].Chemical Engineering,2017,45(12):6-10(in Chinese).
    [17]吴毅,王佳莹,王明坤,等.基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J].西安交通大学学报,2016,50(5):108-113.Wu Yi,Wang Jiaying,Wang Mingkun,et al.A towered solar thermal power plant based on supercritical CO2Brayton cycle[J].Journal of Xi'an Jiaotong University,2016,50(5):108-113(in Chinese).
    [18]方立军,杨雪,张桂英,等.超临界CO2部分冷却布雷顿循环?分析[J].电力科学与工程,2017,33(4):43-48.Fang Lijun,Yang Xue,Zhang Guiying,et al.Exergy analysis of supercritical CO2 partial cooling Brayton cycle[J].Electric Power Science and Engineering,2017,33(4):43-48(in Chinese).
    [19]潘利生,魏小林,李博.CO2跨临界动力循环性能理论及实验研究[J].工程热物理学报,2015,36(3):478-481.Pan Lisheng,Wei Xiaolin,Li Bo.Theoretical and experimental study on performance of CO2 transcritical power cycle[J].Journal of Engineering Thermophysics,2015,36(3):478-481(in Chinese).
    [20]潘利生,史维秀,魏小林.针对地热能的重力驱动CO2跨临界动力循环研究[J].工程热物理学报,2017,38(10):2068-2073.Pan Lisheng,Shi Weixiu,Wei Xiaolin.Study on the gravity driven CO2 transcritical power cycle for geothermal energy[J].Journal of Engineering Thermophysics,2017,38(10):2068-2073(in Chinese).
    [21]潘利生,魏小林,史维秀.一种新型CO2跨临界动力循环理论研究[J].工程热物理学报,2015,36(6):1182-1185.Pan Lisheng,Wei Xiaolin,Shi Weixiu.Theoretical investigation on a novel CO2 transcritical power cycle[J].Journal of Engineering Thermophysics,2015,36(6):1182-1185(in Chinese).
    [22]Pan Lisheng,Wei Xiaolin,Shi Weixiu.Performance analysis of a zeotropic mixture(R290/CO2)for trans-critical power cycle[J].Chinese Journal of Chemical Engineering,2015,23(3):572-577.
    [23]蒋雪峰.超临界CO2压缩机数值模拟与设计研究[D].北京:中国科学院工程热物理研究所,2017.Jiang Xuefeng.Design and Numerical investigation of Supercritical CO2 Compressors[D].Beijing:Institute of Engineering Thermophysics,Chinese Academy of Sciences,2017(in Chinese).
    [24]曹蕾,孙登科,李维成,等.超临界CO2在电力行业的应用及现状[J].洁净煤技术,2018,24(3):1-7,13.Cao Lei,Sun Dengke,Li Weicheng,et al.Application and status of supercritical carbon dioxide in power industry[J].Clean Coal Technology,2018,24(3):1-7,13(in Chinese).
    [25]杨倩鹏,林伟杰,王月明,等.火力发电产业发展与前沿技术路线[J].中国电机工程学报,2017,37(13):3787-3794.Yang Qianpeng,Lin Weijie,Wang Yueming,et al.Industry development and frontier technology roadmap of thermal power generation[J].Proceedings of the CSEE,2017,37(13):3787-3794(in Chinese).
    [26]Zhu Qian.Innovative power generation systems using supercritical CO2 cycles[J].Clean Energy,2017,1(1):68-79.
    [27]沈邱农,程钧培.超超临界机组参数和热力系统的优化分析[J].动力工程,2004,24(3):305-310,405.Shen Qiunong,Cheng Junpei.Optimizing analysis of the parameters and thermal system for ultra supercritical unit[J].Power Engineering,2004,24(3):305-310,405(in Chinese).
    [28]Ahn Y,Bae S J,Kim M,et al.Review of supercritical CO2 power cycle technology and current status of research and development[J].Nuclear Engineering and Technology,2015,47(6):647-661.
    [29]Fetvedt J.Development of the sCO2 Allam cycle:50MWth demonstration plant update[EB/OL].(2016-05-28).http://sco2symposium.com/www2/sco2/papers2016/Keynote/JeremyFedvet.pdf.
    [30]中国工程热物理学会.2018年中国工程热物理学会燃烧学学术年会暨国家自然科学基金燃烧项目交流会会议手册[C].哈尔滨,2018.Chinese Society of Thermal Engineering.Forum Handbook of China National Symposium on Combustion2018[C].Harbin,2018(in Chinese).
    [31]Penkuhn M,Tsatsaronis G.Exergy analysis of the Allam cycle[C]//The 5th International Symposium-Supercritical CO2 Power Cycles.San Antonio,Texas,USA,2016.
    [32]Weiland N,Shelton W,White C,et al.Performance baseline for direct-fired sCO2 cycles[C]//Fifth International Symposium-Supercritical CO2 Power Cycles.San Antonio,TX,2016.
    [33]McClung A,Brun K,Chordia L.Technical and economic evaluation of supercritical oxy-combustion for power generation[C]//Fourth International SymposiumSupercritical CO2 Power Cycles.Pittsburgh,PA,2014:9-10(未找到出版社信息,请补充).
    [34]Zhao Yongming,Yu Bo,Wang Bo,et al.Heat integration and optimization of direct-fired supercritical CO2 power cycle coupled to coal gasification process[J].Applied Thermal Engineering,2018,130:1022-1032.
    [35]McClung A,Brun K,Delimont J.Comparison of supercritical carbon dioxide cycles for oxycombustion[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition.Montreal,Quebec,Canada:The American Society of Mechanical Engineers,2015:V009T36A006.
    [36]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,46(2):22-27,41.Chen Yunan,Zhang Yifan,Liu Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,46(2):22-27,41(in Chinese).
    [37]段承杰,杨小勇,王捷.超临界二氧化碳布雷顿循环的参数优化[J].原子能科学技术,2011,45(12):1489-1494.Duan Chengjie,Yang Xiaoyong,Wang Jie.Parameters optimization of supercritical carbon dioxide Brayton cycle[J].Atomic Energy Science and Technology,2011,45(12):1489-1494(in Chinese).
    [38]郑雅文,徐进良,杨绪飞.超临界CO2分流循环及联合循环的热力学分析[J].中国电机工程学报,2018,38(3),814-822.Zheng Yawen,Xu Jinliang,Yang Xufei.Thermodynamic analysis of supercritical CO2 part-flow cycle and combined cycle[J].Proceedings of the CSEE,2018,38(3),814-822(in Chinese).
    [39]Weiland N T,White C W.Techno-economic analysis of an integrated gasification direct-fired supercritical CO2power cycle[J].Fuel,2018,212:613-625.
    [40]Zhao Q,Mecheri M,Neveux T,et al.Thermodynamic model investigation for supercritical CO2 Brayton cycle for coal-fired power plant application[C]//Fifth International Supercritical CO2 Power Cycles Symposium.San Antonio,TX,2016.
    [41]Chowdhury A S M A,Choudhuri A,Love N,et al.Impact of equation of state model and CO2 diluent on combustion characteristics of a directly heated supercritical oxy-fuel combustor[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V04BT04A047.
    [42]Harvey A H,Huber M L,Laesecke A R,et al.Progress toward new reference correlations for the transport properties of carbon dioxide[C]//The 4th International Symposium-Supercritical CO2 Power Cycles.Pittsburgh,Pennsylvania,2014.
    [43]Manikantachari K R V,Martin S,Bobren-Diaz J O,et al.Thermal properties for the simulation of direct-fired sCO2combustor[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V009T38A008.
    [44]Manikantachari K R V,Martin S,Bobren-Diaz J O,et al.Thermal and transport properties for the simulation of direct-fired sCO2 Combustor[J].Journal of Engineering for Gas Turbines and Power,2017,139(12):121505.
    [45]Lemmon E W,Huber M L,McLinden M O.NISTstandard reference database 23:reference fluid thermodynamic and transport properties-REFPROP,Version 8.0[R].Gaithersburg,MD:National Institute of Standards and Technology,2007.
    [46]Li Hailong.Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2capture processes[D].Stockholm:University Dissertation from Stockholm KTH,2008.
    [47]Span R,Wagner W.A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100K at pressures up to 800MPa[J].Journal of Physical and Chemical Reference Data,1996,25(6):1509-1596.
    [48]White C W,Weiland N T.Evaluation of property methods for modeling direct-supercritical CO2 power cycles[J].Journal of Engineering for Gas Turbines and Power,2017,140(1):011701.
    [49]ProSim.ProSim-software and services in process simulation[EB/OL].http://www.prosim.net.
    [50]Poling B E,Prausnitz J M,O'connell J P.The properties of gases and liquids[M].New York:Mcgraw-Hill,2001.
    [51]Zhu D L,Egolfopoulos F N,Law C K.Experimental and numerical determination of laminar flame speeds of methane/(Ar,N2,CO2)-air mixtures as function of stoichiometry,pressure,and flame temperature[C]//Proceedings of the Combustion Institute 22.Elsevier,1989:1537-1545.
    [52]Hu Xianzhong,Yu Qingbo,Liu Junxiang,et al.Investigation of laminar flame speeds of CH4/O2/CO2mixtures at ordinary pressure and kinetic simulation[J].Energy,2014,70:626-634.
    [53]Kochar Y,Seitzman J,Lieuwen T,et al.Laminar flame speed measurements and modeling of alkane blends at elevated pressures with various diluents[C]//ASME 2011Turbo Expo:Turbine Technical Conference and Exposition.Vancouver,British Columbia,Canada:The American Society of Mechanical Engineers,2011:129-140.
    [54]Pryor O,Barak S,Lopez J,et al.High pressure shock tube ignition delay time measurements during oxy-methane combustion with high levels of CO2 dilution[J].Journal of Energy Resources Technology,2017,139(4):042208.
    [55]Coogan S,Gao Xiang,McClung A,et al.Evaluation of kinetic mechanisms for direct fired supercritical oxy-combustion of natural gas[C]//ASME Turbo Expo2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:The American Society of Mechanical Engineers,2016:V04AT04A037.
    [56]Xie Yongliang,Wang Jinhua,Zhang Meng,et al.Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2[J].Energy&Fuels,2013,27(10):6231-6237.
    [57]Masunov A E,Wait E,Vasu S S.Quantum chemical study of CH3+O2 combustion reaction system:Catalytic effects of additional CO2 molecule[J].The Journal of Physical Chemistry A,2017,121(30):5681-5689.
    [58]Masunov A E,Wait E E,Atlanov A A,et al.Quantum chemical study of supercritical carbon dioxide effects on combustion kinetics[J].The Journal of Physical Chemistry A,2017,121(19):3728-3735.
    [59]El Merhubi H,Kéromnès A,Catalano G,et al.A high pressure experimental and numerical study of methane ignition[J].Fuel,2016,177:164-172.
    [60]Petersen E L,Davidson D F,Hanson R K.Ignition delay times of ram accelerator CH4/O2/diluent mixtures[J].Journal of Propulsion and Power,1999,15(1):82-91.
    [61]Kancherla R V M,Martin S M,Bobren J O,et al.The influence of elevated pressures on the methane combustion in N2 and CO2 dilutions[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta,GA:AIAA,2017:4851.
    [62]Pryor O,Koroglu B,Barak S,et al.Ignition delay times of high pressure oxy-methane combustion with high levels of CO2 dilution[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V04AT04A044.
    [63]Pryor O,Barak S,Koroglu B,et al.Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics[J].Combustion and Flame,2017,180:63-76.
    [64]Vasu S S,Pryor O M,Kapat J S,et al.Developing a validated chemical kinetics model for s CO2 combustion and implementation in CFD[C]//The 5th International Symposium-Supercritical CO2 Power Cycles.San Antonio,Texas,2016.
    [65]Smith G,Golden D M,Frenklach M,et al.GRI-Mech3.0[EB/OL].[2014-11-15].http://combustion.berkeley.edu/gri-mech/.
    [66]Wang Hai,You Xiaoqing,Joshi A V,et al.USC Mech version II.High-temperature combustion reaction model of H2/CO/C1-C4 compounds[EB/OL].(2007).http://ignis.usc.edu/USC_Mech_II.htm.
    [67]Metcalfe W K,Burke S M,Ahmed S S,et al.Ahierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels[J].International Journal of Chemical Kinetics,2013,45(10):638-675.
    [68]The San Diego Mechanism.Chemical-kinetic mechanisms for combustion applications,Mechanical and aerospace engineering(combustion research)[EB/OL].University of California at San Diego,(2014-10-04).http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [69]Healy D,Kalitan D M,Aul C J,et al.Oxidation of C1-C5alkane quinternary natural gas mixtures at high pressures[J].Energy&Fuels,2010,24(3):1521-1528.
    [70]Manikantachari K R V,Vesely L,Martin S,et al.Reduced chemical kinetic mechanisms for oxy/methane supercritical CO2 combustor simulations[J].Journal of Energy Resources Technology,2018,140(9):092202.
    [71]Tan L,Anderson M,Taylor D,et al.Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J].Corrosion Science,2011,53(10):3273-3280.
    [72]Fleming D,Kruizenga A,Pasch J,et al.Corrosion and erosion behavior in supercritical CO2 power cycles[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition.Düsseldorf,Germany:The American Society of Mechanical Engineers,2014:V03BT36A002.
    [73]Pint B A,Keiser J R.The effect of temperature and pressure on supercritical CO2 compatibility of conventional structural alloys[R].Oak Ridge,TN,United States:Oak Ridge National Lab,2016.
    [74]Pint B A,Keiser J R.The effect of O2 and H2O on oxidation in CO2 at 700~800C[R].Oak Ridge,TN,United States:Oak Ridge National Lab,2016.
    [75]Kung S C,Shingledecker J P,Thimsen D,et al.Oxidation/corrosion in materials for supercritical CO2power cycles[C]//Fifth International SymposiumSupercritical CO2 Power Cycles.San Antonio,Texas,2016.
    [76]Ne?ic S,Lee K L J.A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films(part 3):film growth model[J].Corrosion,2003,59(7):616-628.
    [77]鲁金涛,赵新宝,袁勇,等.超临界二氧化碳布雷顿循环系统中材料的腐蚀行为[J].中国电机工程学报,2016,36(3):739-745.Lu Jintao,Zhao Xinbao,Yuan Yong,et al.Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation[J].Proceedings of the CSEE,2016,36(3):739-745(in Chinese).
    [78]Apte S V,Do?an?,Ghodke C.Numerical investigation of potential erosion mechanisms in turbulent flow of sCO2pipe bends[C]//Proceedings of the 5th International Symposium-Supercritical CO2 Power Cycles.San Antonio,Texas,2016.
    [79]Delimont J,Mc Clung A,Portnoff M.Direct fired oxy-fuel combustor for sCO2 power cycles:1MW scale design and preliminary bench top testing[C]//ASME Turbo Expo2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina,USA:The American Society of Mechanical Engineers,2017:V009T38A027.
    [80]Delimont J,McClung A,Portnoff M.Simulation of a direct fired oxy-fuel combustor for sCO2 power cycles[C]//The 5th International Symposium:Supercritical CO2Power Cycles.San Antonio,Texas,2016.
    [81]Chowdhury A S M A,Badhan A,Cabrera L A,et al.Conceptual design of a supercritical oxyfuel combustor based on LOX/methane rocket engine technologies[C]//14th International Energy Conversion Engineering Conference.Salt Lake City,UT:AIAA,2016:4636.
    [82]Badhan A,Chowdhury A S M A,Choudhuri A R,et al.Preliminary computational analysis of combustion in a directly heated supercritical oxy-fuel combustor[C]//55th AIAA Aerospace Sciences Meeting.Grapevine,Texas:AIAA,2017:1609.
    [83]Chowdhury A S M A,Cruz J,Aboud J,et al.Design and experimental demonastration of a high pressure oxy-methane combustor[C]//2018 AIAA Aerospace Sciences Meeting.Kissimmee,Florida:AIAA,2018:1476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700