用户名: 密码: 验证码:
基于有限差分模型的磨削弧区流场动压力数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical analysis on hydrodynamic pressure in grinding contact zone
  • 作者:茅暑杰 ; 徐九华 ; 赵正彩 ; 傅玉灿
  • 英文作者:MAO Shujie;XU Jiuhua;ZHAO Zhengcai;FU Yucan;College of Mechanical and Electronic Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:流体动压力 ; 磨削 ; 泊松方程 ; 有限差分法
  • 英文关键词:hydrodynamic pressure;;grinding;;Poisson equation;;finite difference method
  • 中文刊名:JGSM
  • 英文刊名:Diamond & Abrasives Engineering
  • 机构:南京航空航天大学机电学院;
  • 出版日期:2017-03-01 15:31
  • 出版单位:金刚石与磨料磨具工程
  • 年:2017
  • 期:v.37;No.217
  • 基金:国家自然科学基金(51475233);; 江苏省研究生创新项目(CXLX13_139);; 研究生创新基地(实验室)开放基金(kfjj20150512)
  • 语种:中文;
  • 页:JGSM201701004
  • 页数:6
  • CN:01
  • ISSN:41-1243/TG
  • 分类号:22-27
摘要
磨削弧区动压力对通过磨削区磨削液的有效流量、润滑和冷却作用有重要影响。本研究基于流体动压理论,建立了磨削弧区的动压力分布数学模型,将微分方程简化至近似泊松方程形式后,采用有限差分法将连续方程离散化,得出了磨削区动压力的数值解,并提出了迭代优化算法,提高了计算效率。将砂轮特性参数纳入数学模型之中,可根据砂轮材质、砂轮与工件间隙、砂轮转速等参数预报磨削弧区的磨削液动压力分布。在此理论模型基础上,进行了验证实验,证明模型的科学性。结果表明:通过输入砂轮各项参数,该模型可以快速、准确地预报动压力的分布,为磨削加工提供参考。
        In the grinding process,hydrodynamic pressure has great influence on flow rate,lubrication and cooling behavior of the coolant lubricate.Based on hydrodynamic lubrication theory,mathematical model of the hydrodynamic pressure in grinding contact zone is built.After simplifying the differential equation into Poisson equation,numerical solution of the hydrodynamic pressure is presented by finite difference method and optimized in efficiency by iterative model.Characteristics of grinding wheel are also considered into the mathematical model based on which the hydrodynamic pressure could be estimated according to the wheel texture,the gap between wheel and workpiece,and the cutting speed.The experimental results correspond to the mathematical results and show that this mathematical model can be used for hydrodynamic pressure prediction and provide reference for the grinding process.
引文
[1]TAWAKOLI T.Macro-topography effects on dry grinding with CBN wheels[J].International Journal of Mechatronics&Manufacturing Systems,2008,1(4):415-431.
    [2]ROWE W B,MCCORMACK D F,JIN T.Controlling the surface integrity of ground components[J].Abrasives(DEC/JA),2001,1:24-30.
    [3]CHEN X,ROWE W B,MCCORMACK D F.Analysis of the transitional temperature for tensile residual stress in grinding[J].Journal of Materials Processing Technology,2000,107(1-3):216-221.
    [4]蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新发展[J].航空制造技术,2003(4):31-35.CAI Guangqi,FENG Baofu,ZHAO Henghua.The latest development of grinding abrasive machining technology[J].Aeronautical Manufacturing Technology,2003(4):31-35.
    [5]TAWAKOLI T,RASIFARD A,VESALI A.Effect of the coolant lubricant type and dress parameters on CBN grinding wheels performance[J].Advanced Materials Research,2009,76-78:163-168.
    [6]江征风,郑钧宜.基于Reynolds方程的磨削流体动压特性的研究[J].润滑与密封,2007(10):43-45.JIANG Zhengfeng,ZHENG Junyi.Study on hydrodynamic characteristics of grinding fluid based on Reynolds equation[J].Lubrication Engineering,2007(10):43-45.
    [7]郑钧宜,熊义君,江征风.大雷诺数磨削冷却液流场的数值模拟研究[J].润滑与密封,2008(4):56-59.ZHENG Junyi,XIONG Yijun,JIANG Zhengfeng.Numerical simulation investigation of grinding fluidic field with high Reynolds number[J].Lubrication Engineering,2008(4):56-59.
    [8]VESALI A,TAWAKOLI T.Study on hydrodynamic pressure in grinding contact zone considering grinding parameters and grinding wheel specifications[J].Procedia CIRP,2014,14:13-18.
    [9]HRYNIEWICZ P,SZERI A Z,JAHANMIR S.Application of lubrication theory to fluid flow in grinding:part I—flow between smooth surfaces[J].Journal of Tribology,2001,123(1):94-100.
    [10]白峰杉.数值计算引论[M].北京:高等教育出版社,2010:59-65.BAI Fengshan.An introduction to numerical calculation[M].Beijing:Higher Education Press,2010:59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700