用户名: 密码: 验证码:
微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test
  • 作者:庄海洋 ; 付继赛 ; 陈苏 ; 陈国兴 ; 王雪剑
  • 英文作者:ZHUANG Hai-yang;FU Ji-sai;CHEN Su;CHEN Guo-xing;WANG Xue-jian;Institute of Geotechnical Engineering, Nanjing Tech University;Institute of Geophysics China Earthquake Administration;
  • 关键词:微倾斜场地 ; 砂土液化 ; 土层侧移 ; 地铁地下结构 ; 振动台模型试验
  • 英文关键词:slight inclined ground;;sand liquefaction;;lateral deformation of soil;;subway underground structure;;shaking table test
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:南京工业大学岩土工程研究所;中国地震局地球物理研究所;
  • 出版日期:2018-09-05 17:04
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.301
  • 基金:国家自然科学基金面上项目(No.51778290);国家自然科学基金青年项目(No.51508526);; 江苏省高校自然科学基金重大项目(No.16KJA560001)~~
  • 语种:中文;
  • 页:YTLX201904004
  • 页数:10
  • CN:04
  • ISSN:42-1199/O3
  • 分类号:30-39
摘要
强震中场地砂土液化产生的土层侧移对地面建筑结构和地下生命线工程造成了严重的破坏。可以预见,微倾斜液化场地的土层侧移也将对地铁地下结构的地震安全造成严重的威胁。鉴于此,开展了微倾斜(倾角为6°)可液化场地中两层三跨地铁地下车站结构与区间隧道连接部位地震反应的大型振动台模型试验研究。结果表明:微倾斜可液化场地中地铁车站结构两侧地基出现了明显的非对称液化分布特征,坡体下方水平土层比上方水平土层更易液化;因坡体内土体液化沿坡向下流滑引起了下方水平土层发生了明显的地面抬升,总体上坡体段内的地面侧移量最大,下方水平土层地面侧移量次之,坡体上方水平土层地面侧移量最小。同时,在试验过程中也发现,隧道和车站结构之间发生了明显的差异上浮,可能会造成连接部位附近结构的应力集中或加重该部位的地震破坏。
        In a strong earthquake, the liquefaction-induced lateral deformation of ground has induced severe damages to the ground structures and the underground lifeline engineering. It is foreseeable that the safety of subway underground structure is seriously threatened by the seismic liquefaction-induced lateral deformation of ground. For this reason, the earthquake response of a subway underground structure buried in a soil foundation with a slight inclined ground surface was investigated by shaking table tests. The results demonstrated that the soils beside the underground structure were not liquefied synchronously with the soils near the slope toe were easier to be liquefied than the soils near the slope top. When the soils in the slope was liquefied, they would flow down along the slope, which can induce the uplift of the ground surface near the slope toe. Meanwhile, it was found that the lateral deformation of soil in the slope was larger than that of soil near the slope toe, and the lateral deformation of soil near the slope top was smallest. The results also revealed that the underground subway station floated more severely than that of connected tunnel, which could induce seismic damage at the connection part between the tunnel and subway station.
引文
[1]UENISHI K,SAKURAI S.Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu(Kobe),Japan earthquake estimated from the failure of the Daikai Underground Station[J].Earthquake Engineering and Structural Dynamics,2000,29(6):813-822.
    [2]IIDA H,HIROTO T,YOSHIDA N,et al.Damage to Daikai subway station[J].Soils and Foundations,2017,36(Suppl.2):283-300.
    [3]NISHIYAMA S,MUROYA K,HAYA H,et al.Seismic design of cut and cover tunnel based on damage analyses and experimental studies[J].Quarterly Report of RTRI,1999,40(3):158-164.
    [4]OHTOMO K,SUEHIRO T,KAWAI T,et al.Research on streamlining seismic safety evaluation of underground reinforced concrete duct-type structures in nuclear power stations-Part-2.Experimental aspects of laminar shear sand box excitation tests with embedded RC models[J].Transactions,2001,16:1298.
    [5]MATSUI J,OHTOMO K,KANAYA K.Development and validation of nonlinear dynamic analysis in seismic performance verification of underground RC structures[J].Journal of Advanced Concrete Technology,2004,2(1):25-35.
    [6]TAMARI Y,TOWHATA I.Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J].Journal of the Japanese Geotechnical Society,2003,43(2):69-87.
    [7]IWATATE T,KOBAYASHI Y,KUSU H,et al.Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]//Proceedings of the 12th World Conference on Earthquake Engineering.New Zealand:New Zealand Society for Earthquake Engineering,2000:1043-1051.
    [8]CHE A,IWATATE T.Shaking table test and numerical simulation of seismic response of subway structures[M]//BREBBIA C A,RAJENDRAN A M.Structures Under Shock and Impact VⅡ.[S.l.]:WIT Press,2002:63.
    [9]MOSS R E S,CROSARIOL V A.Scale model shake table testing of an underground tunnel cross section in soft clay[J].Earthquake Spectra,2013,29(4):1413-1440.
    [10]张波.地铁车站地震破坏机理及密贴组合结构的地震响应研究[D].北京:北京工业大学,2012.ZHANG Bo.Study on seismic failure mechanism of subway station and the seismic response of closely-attached subway structures[D].Beijing:Beijing University of Technology,2012.
    [11]李积栋,陶连金,油新华,等.超大型Y形柱地铁车站振动台试验研究[J].铁道科学与工程学报,2016,13(10):2027-2032.LI Ji-dong,TAO Lian-jin,YOU Xin-hua,et al.Research on shaking table test of ultra-large subway station with Y-shape column[J].Journal of Railway Science and Engineering,2016,13(10):2027-2032.
    [12]韩俊艳.埋地管道非一致激励地震反应分析方法与振动台试验研究[D].北京:北京工业大学,2014.HAN Jun-yan.Seismic response analysis and shaking table test of buried pipelines under non uniform excitation[D].Beijing:Beijing University of Technology,2014.
    [13]杨林德,季倩倩,郑永来,等.软土地铁车站结构的振动台模型试验[J].现代隧道技术,2003,40(1):7-11.YANG Lin-de,JI Qian-qian,ZHENG Yong-lai,et al.Shaking table test on metro station structures in soft soil[J].Modern Tunnelling Technology,2003,40(1):7-11.
    [14]景立平,孟宪春,孙海峰,等.三层地铁车站振动台试验分析[J].地震工程与工程振动,2011,31(6):159-166.JING Li-ping,MENG Xian-chun,SUN Hai-feng,et al.Shaking table test analysis of three-story subway station[J].Earthquake Engineering and Engineering Vibration,2011,31(6):159-166.
    [15]CHEN J,SHI X J,LI J.Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J].Soil Dynamics and Earthquake Engineering,2010,30(11):1400-1416.
    [16]陈国兴,庄海洋,程绍革,等.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.CHEN Guo-xing,ZHUANG Hai-yang,CHENG Shao-ge,et al.A large-scale shaking table test for dynamic soil-metro tunnel interaction:analysis of test results[J].Earthquake Engineering and Engineering Vibration,2006,26(6):178-183.
    [17]CHEN G X,WANG Z H,ZUO X,et al.Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground[J].Earthquake Engineering&Structural Dynamics,2013,42(10):1489-1507.
    [18]CHEN G X,CHEN S,QI C Z,et al.Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J].Bulletin of Earthquake Engineering,2015,13(6):1675-1701.
    [19]ZHUANG H Y,CHEN G X,HU Z H,et al.Influence of soil liquefaction on the seismic response of a subway station in model tests[J].Bulletin of Engineering Geology and the Environment,2016,75(3):1169-1182.
    [20]陈继华,庄海洋,王伟.表面倾斜可液化地基变形特性振动台试验研究[J].工程勘察,2013,41(8):6-10.CHEN Ji-hua,ZHUANG Hai-yang,WANG Wei.Shaking table test on deformation properties of the cone-shaped liquefaction foundation[J].Geotechnical Investigation&Surveying,2013,41(8):6-10.
    [21]苏栋,高翔,明海燕,等.液化对砂土场地地表加速度响应的影响[J].防灾减灾工程学报,2016(1):69-74.SU Dong,GAO Xiang,MING Hai-yan,et al.Influence of liquefaction on the responses of acceleraction on the ground surface of sand layer[J].Journal of Disaster Prevention and Mitigation Engineering,2016(1):69-74.
    [22]孙锐,赵倩玉,袁晓铭.液化与非液化场地加速度反应谱对比[J].岩土力学,2014,35(增刊1):299-305.SUN Rui,ZHAO Qian-yu,YUAN Xiao-ming.Comparision between acceleration response spectra on liquefaction and non-liquefaction sites[J].Rock and Soil Mechanics,2014,35(Suppl.1):299-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700