用户名: 密码: 验证码:
蒸汽辅助合成STW结构硅锗酸盐分子筛
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of STW-zeotype Germanosilicate via Steam-assisted Crystallization
  • 作者:房夕杰 ; 刘瑞云 ; 林森 ; 石磊 ; 王润伟 ; 李乙 ; 李俊英
  • 英文作者:FANG Xijie;LIU Ruiyun;LIN Sen;SHI Lei;WANG Runwei;LI Yi;LI Junying;School of Chemistry and Pharmaceutical Engineering,Qilu University of Technology;College of Materials Science and Engineering,Qingdao University of Science and Technology;International Center of Future Science,Jilin University;State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University;
  • 关键词:硅锗酸盐分子筛 ; 蒸汽辅助合成 ; STW分子筛 ; 热稳定性
  • 英文关键词:Germanosilicate;;Steam-assisted crystallization;;STW zeolite;;Thermal stability
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:齐鲁工业大学化学与制药工程学院;青岛科技大学材料科学与工程学院;吉林大学未来科学国际合作联合实验室;吉林大学化学学院无机合成与制备化学国家重点实验室;
  • 出版日期:2019-05-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:51472256);; 山东省重点研究发展计划项目(批准号:2018GGX108002)资助~~
  • 语种:中文;
  • 页:GDXH201905002
  • 页数:6
  • CN:05
  • ISSN:22-1131/O6
  • 分类号:23-28
摘要
采用蒸汽辅助法制备了高稳定性STW结构硅锗酸盐分子筛.相比于传统水热方法,使用温和的蒸汽辅助可显著减少模板剂用量,产物结晶度与骨架Si元素含量更高.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、能量散射谱(EDS)、热重(TG)分析等技术手段考察了蒸汽辅助合成硅锗酸盐分子筛过程中水对产物结构的影响,发现随着外加水量的增加,产物从纯相Ge O2逐渐转化为STW分子筛纯相,最终变为Ge O2,STW与MFI结构的混相;此外,反应物中带入的痕量水可以优先活化Ge元素,从而在一定程度上决定了产物构型.
        STW-zeotype germanosilicate was synthesized via the steam-assisted conversion(SAC) approach with N,N'-diethylethylenediamine(DEEDA) as an organic template. The effect of additional water on the resultant materials was systematically investigated by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and thermogravimetric(TG) analyses. In comparison with the conventional hydrothermal synthesis,the SAC method needs significantly less organic templates,through which the synthesized germanosilicate exhibits a high crystallinity and much more Si element content,as well as the high structural stability. The framework of STW-zeotype germanosilicate prepared by the SAC method remains stable even after undergoing a high temperature calcination(600 ℃).
引文
[1] Zhang R.,Liu N.,Lei Z.,Chen B.,Chem. Rev.,2016,116(6),3658—3721
    [2] Perego C.,Bosetti A.,Ricci M.,Millini R.,Energy Fuels,2017,31(8),7721—7733
    [3] Davis M. E.,Chem. Mater.,2014,26(1),239—245
    [4] Dapsens P. Y.,Mondelli C.,Pérez-Ramírez J.,Chem. Soc. Rev.,2015,44(20),7025—7043
    [5] Dusselier M.,Davis M. E.,Chem. Rev.,2018,118(11),5265—5329
    [6] Zimmermann N. E. R.,Haranczyk M.,Crystal Growth Design,2016,16(6),3043—3048
    [7] Cheng J.,Xu R.,Yang G.,J. Chem. Soc.,Dalton Trans.,1991,92(6),1537—1540
    [8] Corma A.,Navarro M. T.,Rey F.,Rius J.,Navarro S. V.,Rey M. T.,Rius F.,Valencia J. S.,Angew. Chem. Int. Ed.,2001,40(12),2277—2280
    [9] Corma A.,Navarro M. T.,Rey F.,Valencia S.,Chem. Commun.,2001,(18),1720—1721
    [10] Kots P. A.,Sushkevich V. L.,Tyabikov O. A.,Ivanova I. I.,Micro. Meso. Mater.,2017,243,186—192
    [11] Liu X.,Chu Y.,Wang Q.,Wang W.,Wang C.,Xu J.,Deng F.,Solid State Nuclear Magnetic Resonance,2017,87,1—9
    [12] Liu D. R.,Gao Z. H.,Zi W. W.,Zhang J.,Du H. B.,Chen F. J.,Micro. Meso. Mater.,2019,276,232—238
    [13] Liu X.,Xu H.,Zhang L.,Han L.,Jiang J.,Oleynikov P.,Chen L.,Wu P.,ACS Catal.,2016,6(12),8420—8431
    [14] Bai R.,Sun Q.,Wang N.,Zou Y.,Guo G.,Iborra S.,Corma A.,Yu J.,Chem. Mater.,2016,28(18),6455—6458
    [15] Tang L.,Shi L.,Bonneau C.,Sun J.,Yue H.,Ojuva A.,Lee B. L.,Kritikos M.,Bell R. G.,Bacsik Z.,Nat. Mater.,2008,7(5),381—385
    [16] Rojas A.,Arteaga O.,Kahr B.,Camblor M. A.,J. Am. Chem. Soc.,2013,135(32),11975—11984
    [17] Zhang N.,Shi L.,Yu T.,Li T.,Hua W.,Lin C.,J. Solid State Chem.,2015,225,271—277
    [18] Shi L.,Yu T. T.,Lin S.,Yuan Y. B.,Wang J. K.,Zhang N.,Chem. J. Chinese Universities,2015,36(8),1467—1471(石磊,于婷婷,林森,袁玉斌,王济凯,张娜.高等学校化学学报,2015,36(8),1467—1471)
    [19] Moeller K.,Yilmaz B.,Jacubinas R. M.,Mueller U.,Bein T.,J. Am. Chem. Soc.,2011,133(14),5284—5295
    [20] Kubu M.,Millini R.,ilkováN.,Catal. Today,2019,324,3—14
    [21] Jabri H. A.,Miyake K.,Ono K.,Nakai M.,Hirota Y.,Uchida Y.,Miyamoto M.,Nishiyama N.,Micro. Meso. Mater.,2019,278,322—326
    [22] Zheng J.,Lin D.,Liu Z.,Zhu K.,Zhou X.,Yuan W.,Ind. Eng. Chem. Res.,2018,57(2),548—558
    [23] Rimaz S.,Halladj R.,Askari S.,J. Colloid Inter. Sci.,2016,464,137—146
    [24] Zhou D.,Lu X.,Xu J.,Yu A.,Li J.,Deng F.,Xia Q.,Chem. Mater.,2012,24(21),4160—4165
    [25] Neumann G. T.,Hicks J. C.,Cryst. Growth Des.,2013,13(4)1535—1542
    [26] Chen Y.,Li C.,Wang L.,Zhang M.,Liang C.,Micro. Meso. Mater.,2017,252,146—153
    [27] Velaga B.,Peela N. R.,Micro. Meso. Mater.,2019,279,211—219
    [28] Shi L.,Wang J.,Li N.,Lin S.,J. Alloys Compounds,2017,695,2488—2498
    [29] Shi L.,Wang J.,Lin S.,Sun J.,Mater. Lett.,2017,186,382—385
    [30] Cheng X.,Mao J.,Lv X.,Hua T.,Cheng X.,Long Y.,Tang Y.,J. Mater. Chem. A,2014,2(5),1247—1251
    [31] Zhang L.,Huang Y.,J. Phys. Chem. C,2016,120(45),25945—25957
    [32] Du Q.,Guo Y.,Wu P.,Liu H.,Micro. Meso. Mater.,2018,264,272—280
    [33] Rao P. R. H. P.,Matsukata M.,Chem. Commun.,1996,(12),1441—1442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700