用户名: 密码: 验证码:
还原温度对氧化石墨烯的湿度-甲醛交叉敏感性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of reduction temperature of graphene oxide on cross sensitivity between humidity and formaldehyde
  • 作者:雷德会 ; 彭同江 ; 孙红娟 ; 汤光平 ; 杨建召 ; 任亚周 ; 王丽丽
  • 英文作者:LEI Dehui;PENG Tongjiang;SUN Hongjuan;TANG Guangping;YANG Jianzhao;REN Yazhou;WANG Lili;School of Science, Southwest University of Science & Technology;Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology;Institute of Mineral Materials and Application, Southwest University of Science and Technology;Institute of Mechanical Manufacturing Industry, Chinese Academy of Engineering Physics;
  • 关键词:氧化石墨烯 ; 还原 ; 含氧官能团 ; 化学分析 ; 吸附 ; 脱附 ; 交叉灵敏
  • 英文关键词:graphene oxide;;reduction;;oxygen-containing functional groups;;chemical analysis;;adsorption;;desorption;;cross sensitivity
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西南科技大学理学院;西南科技大学固体废物处理与资源化教育部重点实验室;西南科技大学矿物材料及应用研究所;中国工程物理研究院机械制造工业研究所;
  • 出版日期:2018-10-25 15:14
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(U1630132,41772036);; 四川省科技厅项目(2016GZ0428,2017GZ0114);; 西南科技大学研究生创新基金(17ycx072)
  • 语种:中文;
  • 页:HGSZ201901035
  • 页数:10
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:319-328
摘要
以氧化石墨烯溶胶为前体,通过旋涂工艺制备薄膜型气敏元件,在低温80~180℃下进行热处理,获得系列不同还原程度的还原氧化石墨烯气敏元件,采用XRD、AFM、FT-IR、XPS对样品的层结构、薄膜厚度及含氧官能团变化属性进行表征,将气敏薄膜元件在相对湿度为11.3%~93.6%的范围内进行预湿处理,并测定元件对甲醛气氛的敏感性能。结果表明:随热还原处理温度的升高,氧化石墨烯的结构逐渐向类石墨结构转变,含氧官能团逐渐脱失,缺陷增多,薄膜的方块电阻呈数量级地减小,从41 MΩ减小至928Ω;经不同湿度预处理的气敏元件置于甲醛气氛中产生了水分子与甲醛分子的竞争吸附,从而导致电阻的明显变化;在10-4甲醛气氛下,未还原或热还原温度较低的气敏元件适用于低、高湿环境下甲醛气氛的气敏测试,最大灵敏度为69.1%,而还原温度适中的元件则适用于中湿环境的甲醛测试,最大灵敏度为80.3%。
        As precursors, graphite oxide samples are exfoliated and used to prepare graphene oxide thin films by gassp in coating with Ag-Pd integrated electronic device(Ag-Pd IED). The graphene oxide thin films are annealed at 80—180℃ to obtain a series of reduced graphene oxide gas sensing element samples with different reduction degrees,and the layer structures, film thickness and functional groups change properties of all the samples are investigatedby X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, Atomic force microscope and X-ray photoelectron spectroscopy. The prehumidification treatment with the relative humidity from 11.3% to 93.6%, thegas sensitivity tests are carried out to reduced graphene oxide thin film gas sensing element. Then the formaldehydegas sensing measurement are also implemented. The results show that the structure of the graphene oxide samplesare transformed to the graphitic structure after reduction at different thermal treatment temperatures. The oxygenfunctional groups on the surface of graphene oxide gradually pyrolyzed, the defects increase, the structure ofgraphene gradually changes to similar to graphite, and the resistance of the samples were significantly reduced inmagnitude with 41 MΩ to 928 Ω. The samples with different relative humidity pretreated produced competitiveadsorption of water molecules and formaldehyde molecules in formaldehyde atmosphere, leading to obvious changesin resistance. When exposed to the 10-4 formaldehyde gas at room temperature, unreduced or the reduced productsat low temperature show good sensitivity of 69.1% to formaldehyde gas in high humidity environment. In mediumhumidity environment, the reduced products at medium temperature which exhibit a best sensitivity of 80.3% are suitable for the test of formaldehyde gas.
引文
[1] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9):652-655.
    [2] Sun J, Muruganathan M, Mizuta H. Room temperature detection of individual molecular physisorption using suspended bilayer graphene[J]. Science Advances, 2016, 2(4):e1501518-e1501518.
    [3] Fowler J D, Allen M J, Tung V C, et al. Practical chemical sensors from chemically derived graphene[J]. ACS Nano., 2009, 3(2):301-306.
    [4] Chung M G, Kim D H, Lee H M, et al. Highly sensitive NO2gas sensor based on ozone treated graphene[J]. Sensors&Actuators B Chemical, 2012, 166/167(6):172-176.
    [5] Wang C, Wang Y L, Zhan L, et al. Synthesis of nitrogen doped graphene through microwave irridation[J]. Journal of Inorganic Materials, 2012, 27(2):146-150.
    [6] Li M J, Liu C M, Cao H B, et al. Surface charge research of graphene oxide, chemically reduced graphene oxide and thermally exfoliated graphene oxide[J]. Advanced Materials Research, 2013,716:127-131.
    [7] Varghese S S, Lonkar S, Singh K K, et al. Recent advances in graphene based gas sensors[J]. Sensors&Actuators B Chemical,2015, 218:160-183.
    [8] Drewniak S, Muzyka R, Stotolarczyk A, et al. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors[J]. Sensors, 2016, 16(1):103-103.
    [9] Wang T, Huang D, Yang Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications[J].Nano-Micro Letters, 2016, 8(2):95-119.
    [10] Botas C,álvarez P, Blanco C, et al. Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide[J]. Carbon, 2013, 52(2):476-485.
    [11] Wen-Yu C, Yang S Y, Wu W J, et al. A room temperature operation formaldehyde sensing material printed using blends of reduced graphene oxide and poly(methyl methacrylate)[J].Sensors, 2015, 15(11):28842-28853.
    [12] Xu Z, Xue K. Engineering graphene by oxidation:a firstprinciples study[J]. Nanotechnology, 2010, 21(4):045704-045704.
    [13] Lu G, Park S, Yu K, et al. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5(2):1154-1164.
    [14]陈浩,彭同江,刘波,等.还原温度对氧化石墨烯结构及室温下H2敏感性能的影响[J].物理学报, 2017, 66(8):24-32.Chen H, Peng T J, Liu B, et al. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature[J]. Acta Phys. Sin., 2017, 66(8):24-32.
    [15] Lu G, Ocola L E, Chen J. Reduced graphene oxide for roomtemperature gas sensors[J]. Nanotechnology, 2009, 20(44):445502-445502.
    [16] Wu J, Feng S, Li A, et al. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures[J]. Sens. Actuators B Chem, 2018, 255:1805-1813.
    [17] Wu J, Feng S, Wei X, et al. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing[J].Advanced Functional Materials, 2016, 26(41):7462-7469.
    [18] Guo L, Jiang H B, Shao R Q, et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J].Carbon, 2012, 50(4):1667-1673.
    [19] Travlou N A, Rodriguez-Castellon E, Bandosz T J. Sensing of NH3on heterogeneous nanoporous carbons in the presence of humidity[J]. Carbon, 2016, 100:64-73.
    [20]王泉珺,孙红娟,彭同江,等.氧化程度对氧化石墨烯吸附亚甲基蓝性能的影响[J].化工学报, 2017, 68(4):1712-1720.Wang Q J, Sun H J, Peng T J, et al. Influence of oxidation degree of graphene oxide on adsorption performance for methylene blue[J]. CIESC Journal, 2017, 68(4):1712-1720.
    [21]孙红娟,彭同江.石墨氧化-还原法制备石墨烯材料[M].北京:科学出版社, 2015:52-79.Sun H J, Peng T J. Graphene Materials Prepared by Oxidationreduction Method from Graphite[M]. Beijng:Science Press, 2015:52-79.
    [22]黄桥,孙红娟,杨勇辉.氧化石墨的谱学表征及分析[J].无机化学学报, 2011, 27(9):1721-1726.Huang Q, Sun H J, Yang Y H. Spectroscopy characterization and analysis of graphite oxide[J]. Chin. J. Inorg. Chem, 2011, 27(9):1721-1726.
    [23]陈浩,彭同江,孙红娟.氧化石墨烯薄膜厚度对元件湿敏性能的影响[J].材料导报, 2016, 30(23):140-145.Chen H, Peng T J, Sun H J. Influence of thickness of grapheme oxide thin film on humidity sensitivity[J]. Materials Review, 2016,30(23):140-145.
    [24] Rozada R, Paredes J I, López M J, et al. From graphene oxide to pristine graphene:revealing the inner workings of the full structural restoration.[J]. Nanoscale, 2015, 7(6):2374-2390.
    [25] Acik M, Lee G, Mattevi C, et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J]. Nature Materials, 2010, 9(10):840-845.
    [26]刘波,孙红娟,彭同江.石墨烯分子振动模式因子群分析与密度泛函计算[J].物理化学学报, 2012, 28(4):799-804.Liu B, Sun H J, Peng T J. Factor group analysis of molecular vibrational modes of graphene and density functional calculations[J]. Journal of Physical Chemistry, 2012, 28(4):799-804.
    [27] Zhang X, Liu D, Yang L, et al. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis[J].Journal of Materials Chemistry A, 2015, 3(18):10031-10037.
    [28] Dimiev A M, Alemany L B, Tour J M. Graphene oxide. origin of acidity, its instability in water, and a new dynamic structural model.[J]. ACS Nano, 2012, 7(1):576-588.
    [29]翁程杰,史叶勋,何大方,等.水热法制备还原氧化石墨烯及其导电性调控[J].化工学报, 2018, 69(7):3263-3269.Weng C J, Shi Y X, He D F, et al. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity[J]. CIESC Journal, 2018, 69(7):3263-3269.
    [30] Acik M, Lee G, Mattevi C, et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2015, 115(40):19761-19781.
    [31] Rimeika R, Barkauskas J,?iplys D. Surface acoustic wave response to ambient humidity in graphite oxide structures[J].Applied Physics Letters, 2011, 99(5):1381. 051915-051915-3.
    [32] Yu M R, Wu R J, Suyambrakasam G, et al. Evaluation of graphene oxide material as formaldehyde gas sensor[J]. Journal of Computational&Theoretical Nanoscience, 2012, 16(1):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700