用户名: 密码: 验证码:
钢轨缺陷的超声相控阵波数成像算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrasonic phased array wavenumber imaging algorithm for rail defects
  • 作者:刘建全 ; 张海燕 ; 徐梦云
  • 英文作者:LIU Jianquan;ZHANG Haiyan;XU Mengyun;School of Communication and Information Engineering, Shanghai University;
  • 关键词:钢轨缺陷 ; 超声相控阵 ; 波数成像算法 ; 全聚焦
  • 英文关键词:Rail defects;;Ultrasonic phased array;;Wavenumber imaging algorithm;;Total focusing method
  • 中文刊名:YYSN
  • 英文刊名:Journal of Applied Acoustics
  • 机构:上海大学通信与信息工程学院;
  • 出版日期:2018-11-09 14:35
  • 出版单位:应用声学
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金项目(11674214,11474195,51478258)
  • 语种:中文;
  • 页:YYSN201806001
  • 页数:8
  • CN:06
  • ISSN:11-2121/O4
  • 分类号:3-10
摘要
该文应用超声相控阵全矩阵捕获的波数成像算法,检测带有通孔缺陷的钢轨和B型相控阵试块。以实验获取的全矩阵数据为基础,研究了自发自收模式和全矩阵模式的波数成像算法,理论上分析了全聚焦方法和波数算法的计算性能,取得波数成像的结果并与全聚焦方法的成像结果做了对比。实验结果表明:波数成像算法具有更快的计算速度和更高的横向分辨率,且能够更加精准地还原钢轨中缺陷大小和形状,而传统的全聚焦方法计算耗时长,聚焦点分布不均匀,重建较大的缺陷出现了纵向拉长的现象,不能够较好地反映钢轨中的大缺陷。波数成像算法在各向同性材料实时检测中有很大的应用潜能。
        In this paper, wavenumber imaging algorithm of ultrasonic phased array full matrix capture(FMC)is used to detect the rail and B-type phased array test blocks with through-hole defects. Based on the full matrix data obtained experimentally, the wavenumber imaging algorithm of self-transmitting-self-receiving mode and full-matrix mode is studied. The computational performance of total focusing method(TFM) and wavenumber algorithm is theoretically analyzed. The results of wavenumber imaging are obtained and compared with that of total focusing method. The experimental results show that wavenumber imaging algorithm has faster calculation speed and higher lateral resolution, and the size and shape of the defects in the rail can be reverted more accurately. However, the traditional total focusing method takes long time and the focal points are unevenly distributed. The reconstruction of a larger defect appears to be stretched longitudinally, so cannot better reflect the larger defects in the rail. Wavenumber imaging algorithm in real-time detection of isotropic materials has great potential applications.
引文
[1] Stolt R H. Migration by Fourier transform[J]. Geophysics,1978, 43(1):23–48.
    [2] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):194–207.
    [3] Callow H J, Hayes M P, Gough P T. Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple receiver geometry[J]. Electronics Letters, 2002, 38(7):336–337.
    [4]张春城,周正欧.基于Stolt偏移的探地雷达合成孔径成像研究[J].电波科学学报, 2004, 19(3):316–320.Zhang Chuncheng, Zhou Zheng’ou. Ground penetrating radar synthetic aperture imaging based on Stolt migration[J]. Chinese Journal of Radio Science, 2004, 19(3):316–320.
    [5] Hunter A J, Drinkwater B W, Wilcox P D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 2008, 55(11):2450–2462.
    [6]严刚,周丽.基于频率-波数域偏移的损伤被动成像识别研究[J].固体力学学报, 2011, S1(32):273–279.Yan Gang, Zhou Li. Passive imaging and identification of damages using migration technique in frequencywavenumber domain[J]. Chinese Journal of Solid Mechanics, 2011, S1(32):273–279.
    [7]周子超,苏小敏.基于Stolt插值的微波近场成像方法研究[J].现代电子技术, 2011, 34(17):28–30.Zhou Zichao, Su Xiaomin. Near-field microwave imaging based on Stolt interpolation[J]. Modern Electronics Technique, 2011, 34(17):28–30.
    [8] Moghimirad E, Villagómez H C A, Mahloojifar A, et al.Synthetic aperture ultrasound Fourier beamformation using virtual sources[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(12):2018–2030.
    [9] Fan C, Pan M, Luo F, et al. Multi-frequency timereversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014,61(12):2067–2074.
    [10] Wiley C A. Synthetic aperture radars:a paradigm for technology evolution[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3):440–443.
    [11] Li Z, Wang J, Liu Q H. Frequency-domain backprojection algorithm for synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):905–909.
    [12] Han Z, Peng H, Zhao X. Sector-scanning 3D ultrasound imaging in frequency domain with 1D array transducer[J].Ultrasonics, 2017, 76:2834.
    [13] Han Z, Peng H, Zhao X, et al. 3D ultrasound imaging in frequency domain based on concepts of array beam and synthetic aperture[J]. Ultrasonics, 2018, 84:254–263.
    [14] Muller A, Robertson-Welsh B, Gaydecki P, et al. Structural health monitoring using Lamb wave reflections and total focusing method for image reconstruction[J]. Applied Composite Materials, 2017, 24(2):553–573.
    [15] Hu H, Du J, Xu N, et al. Ultrasonic sparse-TFM imaging for a two-layer medium using genetic algorithm optimization and effective aperture correction[J]. NDT&E International, 2017, 90:24–32.
    [16] Moghimirad E, Mahloojifar A, Asl B M. Computational complexity reduction of synthetic aperture focus in ultrasound imaging using frequency-domain reconstruction[J].Ultrasonic Imaging, 2015, 38(3):175–193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700