用户名: 密码: 验证码:
考虑滑移的CVT变速系统综合效率特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Research on Comprehensive Efficiency Characters of CVT Variator System Considering Slip
  • 作者:傅兵 ; 周云山 ; 张飞铁 ; 瞿道海 ; 罗威
  • 英文作者:FU Bing;ZHOU Yunshan;ZHANG Feitie;QU Daohai;LUO Wei;College of Mechanical and Vehicle Engineering,Hunan University;School of Mechanical Engineering,Xiangtan University;
  • 关键词:无级变速器 ; 滑移 ; 综合效率 ; 滑移控制 ; 试验
  • 英文关键词:continuous variable transmission;;slipping;;comprehensive efficiency;;slip control;;test
  • 中文刊名:HNDX
  • 英文刊名:Journal of Hunan University(Natural Sciences)
  • 机构:湖南大学机械与运载工程学院;湘潭大学机械工程学院;
  • 出版日期:2019-02-25
  • 出版单位:湖南大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.302
  • 基金:国家自然科学基金资助项目(51475151,51475402);; 国家国际科技合作专项资助项目(2014DFA70170)~~
  • 语种:中文;
  • 页:HNDX201902001
  • 页数:9
  • CN:02
  • ISSN:43-1061/N
  • 分类号:6-14
摘要
为改善CVT变速系统夹紧力过高、效率偏低的问题,采用试验辨识方法揭示金属带滑移率与变速系统综合效率间的关联规律.考虑金属带滑移对传动损失及油泵功耗的耦合影响,构建变速系统综合效率试验模型,以某自主开发的CVT变速系统为研究对象,设计变速机构传动效率滑移率试验及油泵功耗试验,分析出不同速比、不同输入转矩及不同输入转速下变速系统综合效率随滑移率的变化特性,最后根据试验结果导出变速系统最优效率滑移线及最优效率安全系数.结果表明:在滑移率增加的过程中存在变速系统综合效率峰值滑移点,该滑移点位于传动效率峰值滑移点与摩擦系数饱和滑移点之间,其主要受速比的影响,输入转矩和输入转速对其位置的影响可以忽略;在整个速比区间,变速系统最优效率滑移线位于0.98%~3.16%之间,对应的综合效率为0.878~0.915,最优效率安全系数位于1.09~1.16范围内,其较CVT传统夹紧力安全系数降低了10.8%~16.2%.研究结果可为CVT滑移控制提供明确的控制目标,同时可为降低CVT夹紧力安全系数提供下限参考边界.
        In order to decrease the clamping force and increase the transmission efficiency of CVT variator sys-tem,the relationship between the slip rate and comprehensive efficiency of variator system was examined by using the experimental identification method. Considering the coupling effect of slip on the transmission loss and oil pump power consumption,a model for testing the comprehensive efficiency of variator system was constructed. Based on a self-developed CVT variator system,the tests of transmission efficiency to slip rate and oil pump power consumption were designed,the variation characteristics of the comprehensive efficiency of variator system considering the slip rate under different speed ratio,input torque and input speed were analyzed,and the maximum efficiency slip line and maximum efficiency safety factor of the variator system were derived according to the test results. The results demonstrate that,with the increase of the slip rate,the peak comprehensive efficiency slip point of variator system occurs,which is located between the peak transmission efficiency slip point and friction coefficient saturation slip point,and mainly affected by the speed ratio. The influence of input torque and input speed can be neglected. In the whole speed ratio range,the maximum efficiency slip line of variator system is located between 0.98%~3.16%,the corresponding comprehensive efficiency is between 0.878 ~0.915,and the maximum efficiency safety factor is between 1.09~1.16,which is reduced by 10.8%~16.2% when compared with the traditional clamping force safety factor. The results of the study can provide a clear control target for CVT slip control and also provide a lower reference boundary for reducing the safety factor of CVT clamping force.
引文
[1]秦大同,林毓培,刘星源,等.基于系统效率的PHEV动力与控制参数优化[J].湖南大学学报(自然科学版),2018,45(2):62—68.QIN D T,LIN Y P,LIU X Y,et al. Optimization of power and con-trol parameters for PHEV based on system efficiency[J]. Journal ofHunan University(Natural Sciences),2018,45(2):62—68.(InChinese)
    [2] KHANIKI H B,ZOHOOR H,SOHRABPOUR S. Performance anal-ysis and geometry optimization of metal belt-based continuouslyvariable transmission systems using multi-objective particle swarmoptimization[J]. Journal of the Brazilian Society of MechanicalSciences&Engineering,2017,39(3):1—15.
    [3]周云山,贾杰锋,李航洋,等. CVT插电式混合动力汽车经济性控制策略[J].湖南大学学报(自然科学版),2016,43(8):25—31.ZHOU Y S,JIA J F,LI H Y,et al. Economic control strategy for aplug-in hybrid electric vehicle equipped with CVT[J]. Journal ofHunan University(Natural Sciences),2016,43(8):25—31.(InChinese)
    [4]张飞铁,王建德,周云山,等. CVT锥轮推力平衡模型及影响因素研究[J].湖南大学学报(自然科学版),2016,43(4):24—30.ZHANG F T,WANG J D,ZHOU Y S,et al. Research on pulleythrust balance model of CVT and impact factors[J]. Journal of Hu-nan University(Natural Sciencess),2016,43(4):24—30.(In Chi-nese)
    [5]韩玲,安颖,SOHEL A,等.基于滑模极值搜索的无级变速器夹紧力控制策略[J].机械工程学报,2017,53(4):105—113.HAN L,AN Y,SOHEL A,et al. Clamping force control strategy ofcontinuously variable transmission based on extremum seekingcontrol of sliding mode[J]. Journal of Mechanical Engineering,2017,53(4):105—113.(In Chinese)
    [6] BONSEN B,KLAASSEN T,PULLES R J,et al. Performance opti-misation of the push-belt CVT by variator slip control[J]. Interna-tional Journal of Vehicle Design,2005,39(3):232—256.
    [7] MEULEN S V D,JAGER B D,VELDPAUS F,et al. Combining ex-tremum seeking control and tracking control for high-performanceCVT operation[J]. Control Engineering Practice,2014,29:86—102.
    [8] KOBAYASHI D,MABUCHI Y,KATOH Y. A study on the torquecapacity of a metal pushing v-belt for CVTs[C]//Society of Auto-motive Engineers Transmission and Driveline Systems Symposium.Detroit:SAE,1998:980822.
    [9] DROGEN M V,LANN M V D. Determination of variator robustnessunder macro slip conditions for a push belt CVT[C]//SAE WorldCongress. Detroit:SAE,2004:2004-01-0480.
    [10] HIROYUKI N,HIROYUKI Y,HIDEYUKI S,et al. Friction char-acteristics analysis for clamping force setup in metal v-belt typeCVT[C]//2005 SAE Congress.Detroit,USA,2005-01-1462.
    [11]JI J,JANG M J,KWON O E,et al. Power transmission dynamics inmicro and macro slip regions for a metal v-belt continuously vari-able transmission under external vibrations[J]. International Jour-nal of Automotive Technology,2014,15(7):1119—1128.
    [12] BONSEN B,KLAAMSSEN T,MEERAKKER K,et al. Analysis ofslip in a continuously variable transmission[C]//International Me-chanical Engineering Congress and Exposition,Dynamic Systemsand Control. Washington DC:ASME,2003:995—1000.
    [13]AKEHURST S,VAUGHAN N D,PARKER D A,et al. Modeling ofloss mechanisms in a pushing metal v-belt continuously variabletransmission.Part 2:pulley deflection losses and total torque lossValidation[J]. Proc IMechE Part D:Journal of Automobile Engi-neering,2004,218(11):1295—1306.
    [14] NARITA K,PRIEST M. Metal-metal friction characteristics andthe transmission efficiency of a metal V-belt-type continuouslyvariable transmission[J]. Proc IMechE Part J:Engineering Tribolo-gy,2007,221:11—26.
    [15]曹成龙,周云山,高帅,等.基于滑移率控制的金属带式无级变速器夹紧力研究[J].中国机械工程,2012,23(12):2893—2897.CAO C L,ZHOU Y S,GAO S,et al. Study on clamping force ofmetal v-belt type CVT based on slip control[J]. China MechanicalEngineering,2012,23(12):2893—2897.(In Chinese)
    [16]张飞铁,周云山,薛殿伦,等.无级变速器金属带滑移特性试验研究[J].机械工程学报,2015,51(2):90—95.ZHANG F T,ZHOU Y S,XUE D L,et al. Experiment research onslip characters of metal v-belt of continuous variable transmission[J]. Journal of Mechanical Engineering,2015,51(2):90—95.(InChinese)
    [17]程乃士,张伟华,杨会林,等.汽车金属带式无级变速器-CVT原理和设计[M].北京:机械工业出版社,2007:123—130.CHEN N S,ZHANG W H,YANG H L,et al. Metal V-belt contin-uously variable transmission-theory and design[M]. Beijing:ChinaMachine Press,2007:123—130.(In Chinese)
    [18]傅兵,周云山,高帅,等.金属带式无级变速器带轮变形损失研究[J].中国机械工程,2017,28(12):1420—1426.FU B,ZHOU Y S,GAO S,et al. Research on pulley deflection lossof metal belt continuously variable transmission[J]. Journal of Me-chanical Engineering,2017,28(12):1420—1426.(In Chinese)
    [19]BERKEL K V,FUJII T,HOFMAN T,et al. Belt-pulley friction es-timation for the continuously variable transmission[C]//Decisionand Control and European Control Conference.Orlando,USA:IEEE,2011:6672—6677.
    [20]薛殿伦,马洪涛,曹成龙,等.基于遗传算法的CVT夹紧力模糊-PID控制优化[J].湖南大学学报(自然科学版),2012,39(12):37-42.XUE D L,MA H T,CAO C L,et al. Fuzzy-PID controller opti-mization of clamping force for CVT based on genetic algorithm[J].Journal of Hunan University(Natural Sciences),2012,39(12):37—42.(In Chinese)
    [21] ANDO T,YAGASAKI T,ICHIJOS,et al. Improvement of trans-mission efficiency in CVT shift mechanism using metal pushing v-belt[J]. SAE Int J Engines,2015,3(8):1391—1397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700