用户名: 密码: 验证码:
nMOSFET中界面陷阱产生电流的电容效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The capacitance effect of the generation current induced by interface traps in nMOSFET
  • 作者:陈海峰
  • 英文作者:CHEN Haifeng;School of Electronic Engineering,Xi'an University of Posts and Telecommunications;
  • 关键词:场效应晶体 ; 界面陷阱 ; 产生效应 ; 电容
  • 英文关键词:MOSFET;;interface trap;;generation effect;;capacitance
  • 中文刊名:XAYD
  • 英文刊名:Journal of Xi'an University of Posts and Telecommunications
  • 机构:西安邮电大学电子工程学院;
  • 出版日期:2017-05-10
  • 出版单位:西安邮电大学学报
  • 年:2017
  • 期:v.22;No.126
  • 基金:国家自然科学基金资助项目(61306131)
  • 语种:中文;
  • 页:XAYD201703012
  • 页数:4
  • CN:03
  • ISSN:61-1493/TN
  • 分类号:77-80
摘要
研究金属氧化物场效应晶体管nMOSFET中界面陷阱引发的产生电流的电容特性,基于产生效应生成的泄漏电流实验曲线提取电容曲线,发现其呈现出一正一负两个尖峰。这种现象为在积累区到耗尽区、耗尽区到反型区的两个过渡区域中陷阱产生的载流子受到栅压的控制程度最强所致。理论分析发现,正、负尖峰峰值绝对值分别为2.8×10~(-16) A·s/(m·V)和4×10~(-16) A·s/(m·V),且负峰值的绝对值大于正峰值,该结果反映出从积累区进入到耗尽层初期时栅电压下的电容能力要强于从耗尽区进入到反型区时的电容能力。
        The capacitance of the interface trap-induced generation current in nMOSFET is investigated.By transforming the experimental generation current curve into the capacitance curve,it turns out that there are a positive peak and a negative peak in the capacitance curve.The mechanism behind the two peaks is that the effect of the gate voltage on the trap-generated carriers is the strongest in the two transitional regions from accumulation to depletion and from depletion to inversion.The absolute value of positive and negative peaks are at 2.8×10~(-6) A·s/(m·V)and 4×10~(-6) A·s/(m·V)respectively,and the negative peak is higher than the positive peak.These results show that the capacitance capacity at the gate voltage from the accumulation to the initial depletion layer is better than that from the depletion region to the inversion region.
引文
[1]CHENG C Y,FANG Y K,HSIEH J C,et al.Investigation and localization of the SiGe source/drain(S/D)strain-induced defects in PMOSFET with 45nm CMOS technology[J/OL]〗.IEEE Electron Device Letters,2007,28(5):408-411[2016-04-23].https://doi.org/10.1109/LED.2007.895446..
    [2]LAWRENCE R K,IOANNOU D E,JENKINS W C,et al.Gated-diode characterization of the back-channel interface on irradiated SOI wafers[J/OL].IEEE Transactions on Nuclear Science,2002,48(6):2140-2145[2002-08-06].https://doi.org/10.1109/23.983186.
    [3]FELIX J A,SHANEYFELT M R,DODD P E,et al.Radiation-induced off-state leakage current in commercial power MOSFETs[J/OL].IEEE transactions on Nuclear Science,2005,52(6):2378-2386[2006-02-06].http://dx.doi.org/10.1109/TNS.2005.860724.
    [4]MORI Y,YOSHIMOTO H,TAKEDA K,et al.Mechanism of random telegraph noise in junction leakage current of metal-oxide-semiconductor field-effect transistor[J/OL].Journal of Applied Physics,2012,111(10):104513[2012-05-10].http://dx.doi.org/10.1063/1.4721658.
    [5]MA C Y.Current degradation by carrier recombination in a poly-Si TFET with gate-drain underlapping[J/OL].IEEE Transactions on Electron Devices,2017,64(3):1390-1393[2017-02-20].https://doi.org/10.1109/TED.2017.2648846.
    [6]PAN J.The gate-controlled diode,high-frequency,and quasi-static C-V techniques for characterizing advanced vertical trenched power MOSFETs[J/OL].IEEE Transactions on Electron Devices,2009,56(6):1351-1354[2007-04-23].https://doi.org/10.1109/TED.2009.2018161.
    [7]YOUNG C D,NEUGROSCHEL A,MATTHEWS K,et al.Gated diode investigation of bias temperature instability in high-κFinFETs[J/OL].IEEE Electron Device Letters,2010,31(7):653-655[2010-06-10].https://doi.org/10.1109/LED.2010.2049635.
    [8]CHEN H F,GUO L X,DU H M.Degradation of the transconductance of gatemodulated generation current in nMOSFET[J/OL].Chinese Physics B,2012,21(8):088501[2012-08-01].https://doi.org/10.1088/1674-1056/21/8/088501.
    [9]CHEN H F.Gate-modulated generation recombination current in n-type metal oxide semiconductor field-effect transistor[J/OL].Chinese Physics B,2014,23(12):128502[2014-12-01].https://doi.org/10.1088/1674-1056/23/12/128502.
    [10]CHEN H F,XIE D,GUO L X.Coupling mechanism of interface induced generation recombination current with the floating source in nMOSFET[J/OL].Journal of Applied Physics,2016,120(17):174504[2016-11-07].http://dx.doi.org/10.1063/1.4967165.
    [11]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2014:236.
    [12]毛建华,魏巍.GSM制式数据卡功放的能量补偿分析方法[J/OL].西安邮电大学学报,2013,18(2):36-38[2016-12-12].http://dx.chinadoi.cn/10.13682/j.issn.2095-6533.2013.02.014.
    [13]冯维婷.Multisim在电路分析动态电路教学中的应用[J/OL].西安邮电学院学报,2010,15(2):175-178[2016-12-12].http://dx.chinadoi.cn/10.13682/j.issn.2095-6533.2010.02.013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700