用户名: 密码: 验证码:
电感耦合等离子体原子发射光谱法测定电炉熔炼黄磷电尘灰中镓
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of gallium in yellow phosphorus electric dust from electric furnace smelting by inductively coupled plasma atomic emission spectrometry
  • 作者:赵宏伟 ; 吴鉴 ; 黄海艺 ; 谢克强
  • 英文作者:ZHAO Hong-wei;WU Jian;HUANG Hai-yi;XIE Ke-qiang;The National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology;Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province;
  • 关键词:电感耦合等离子体原子发射光谱法(ICP-AES) ; 电炉熔炼黄磷电尘灰 ;
  • 英文关键词:inductively coupled plasma atomic emission spectrometry(ICP-AES);;yellow phosphorus electric dust from electric furnace smelting;;gallium
  • 中文刊名:YJFX
  • 英文刊名:Metallurgical Analysis
  • 机构:昆明理工大学真空冶金国家工程实验室;云南省有色金属真空冶金重点实验室;
  • 出版日期:2019-02-20 09:48
  • 出版单位:冶金分析
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(51364021)
  • 语种:中文;
  • 页:YJFX201902010
  • 页数:5
  • CN:02
  • ISSN:11-2030/TF
  • 分类号:60-64
摘要
镓是广泛应用于电子工业和核能工业的重要稀散金属,对电炉熔炼黄磷电尘灰中镓含量的准确测定是从电炉熔炼黄磷电尘灰中提取镓的重要环节,以罗丹明B萃取-分光光度法测定黄磷电尘灰中的镓含量,结果准确,但操作繁琐、周期较长,难于快速测定电炉熔炼黄磷电尘灰中镓含量。试验采用王水-氢氟酸-硫酸体系溶解样品,选择Ga 417.20nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定电炉熔炼黄磷电尘灰中微量镓的分析方法。校准曲线线性相关系数为0.999 9;方法中镓的检出限为0.002 1μg/mL,测定下限为0.010μg/mL。按照实验方法测定电炉熔炼黄磷电尘灰中镓含量,结果的相对标准偏差(RSD,n=11)为0.11%,加标回收率为99%~107%;按照实验方法测定电炉熔炼黄磷电尘灰样品中镓,并与罗丹明B萃取-分光光度法测定结果进行比对,结果相一致。
        Gallium is an important dissipated metal and it has been widely used in electronic industry and nuclear energy industry.The accurate determination of gallium content in yellow phosphorus electric dust from electric furnace smelting is an important step for then extraction of gallium fromyellow phosphorus electric dust from electric furnace smelting.The content of gallium yellow phosphorus electric dust is usually determined by spectrophotometry after rhodamine B extraction.The determination results are accurate.However,the operation of this method is complicated with long analysis period,which is not applicable for the rapid determination of gallium content in yellow phosphorus electric dust from electric furnace smelting.The sample was dissolved in aqua regia-hydrofluoric acid-sulfuric acid system.Ga 417.20 nm was selected as the analytical spectral line.The analysis method of micro amount gallium in yellow phosphorus electric dust from electric furnace smelting by inductively coupled plasma atomic emission spectrometry(ICPAES)was established.The linear correlation coefficient of calibration curve was 0.999 9.The detection limit of gallium in the method was 0.002 1μg/mL.The low limit of determination was 0.010μg/mL.The proposed method was applied for the determination of gallium in yellow phosphorus electric dust from electric furnace smelting.The relative standard deviation(RSD,n=11)was 0.11% and the recoveries were between 99%and 107%.The content of gallium in yellow phosphorus electric dust from electric furnace smelting samples was determined according to the experimental method.The found results were consistent with those obtained by rhodamine B extraction-spectrophotometry.
引文
[1]贺山明,徐志峰,汪金良,等.黄磷电尘灰中镓的加压酸浸试验[J].有色金属工程,2017,7(1):40-43.HE Shan-ming,XU Zhi-feng,WANG Jin-liang,et al.Pressure acid leaching of gallium extraction phosphorus electric dust[J].Nonferrous Metals Engineering,2017,7(1):40-43.
    [2]王生军,梅毅,梁雪松,等.黄磷电炉电尘灰中镓的提取可能性[J].云南化工,2008,35(5):73-76.WANG Sheng-jun,MEI Yi,LIANG Xue-song,et al.Extraction of gallium form yellow phosphorus dust of electric furnace[J].Yunnan Chemical Technology,2008,35(5):73-76.
    [3]李法鸿,陈晓青,贾莉英,等.2-乙基己醇萃取-原子吸收光谱法测定微量镓[J].分析试验室,2000,19(5):15-18.LI Fa-hong,CHEN Xiao-qing,JIA Li-ying,et al.Determination of microamounts of gallium by flame atomic absorption spectroscopy after extraction with 2-ethyl hexanal[J].Analysis Laboratory,2000,19(5):15-18.
    [4]黄碧燕.石墨炉原子吸收光谱法测定地质样品中微量镓[J].光谱实验室,2010,27(5):2042-2044.HUANG Bi-yan.Determination of trace Ga in geological samples by GFAAS[J].Chinese Journal of Spectroscopy Laboratory,2010,27(5):2042-2044.
    [5]申明乐,黄雪征.煤中镓的火焰原子吸收光谱法测定[J].分析测试学报,2008,27(6):657-659.SHEN Ming-le,HUANG Xue-zheng.Flame atomic absorption spectrometric determination of gallium in coal[J].Journal of Instrumental Analysis,2008,27(6):657-659.
    [6]乐淑葵.催化分光光度法测定地质样品中微量镓[J].中国无机分析化学,2018,8(3):12-15.YUE Shu-kui.Determination of trace gallium in geological samplesby catalytic photometric method[J].Chinese Journal of Inorganic Analytical Chemistry,2018,8(3):12-15.
    [7]吴琳,周莉,李品,等.聚乙二醇-硫酸铵-双水相萃取分光光度法测定地质物料中的镓[J].分析试验室,2016,35(6):629-632.WU Lin,ZHOU Li,LI Pin,et al.Determination of gallium in geological materials by spectrophotometry connected polyethylene glycol-ammonium sulphate aqueous two-phase extraction[J].Analysis Laboratory,2016,35(6):629-632.
    [8]祝春水,马卫兴,徐国想,等.3-甲氧基-甲亚胺H分光光度法测定镓(III)[J].冶金分析,2008,28(1):44-47.ZHU Chun-shui,MA Wei-xing,XU Guo-xiang,et al.Spectrophotometric determination of gallium(III)with3-methoxy-azomethine H[J].Metallurgical Analysis,2008,28(1):44-47.
    [9]卢业友,杨芬.电感耦合等离子体原子发射光谱法测定铝土矿中锂和镓[J].冶金分析,2017,37(3):70-73.LU Ye-you,YANG Fen.Determination of lithium and gallium in bauxite by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2017,37(3):70-73.
    [10]成勇.电感耦合等离子体原子发射光谱法测定高钛型钒渣中铬、钴、镍、镓、钪、锆的含量[J].理化检验:化学分册,2018,54(1):49-54.CHENG Yong.ICP-AES determination of chromium,cobalt,nickel,gallium,scandium and zirconium in the high titanium vanadium slag[J].Physical Testing and Chemical Analysis Part B:Chemical Analysis,2018,54(1):49-54.
    [11]刘冰冰,王英滨.电感耦合等离子体-原子发射光谱法测定粉煤灰中的镓[J].光谱实验室,2012,29(6):3840-3844.LIU Bing-bing,WANG Ying-bin.Determination of gallium in fly ash by ICP-AES[J].Chinese Journal of Spectroscopy Laboratory,2012,29(6):3840-3844.
    [12]龙萍,吴鉴,谢克强,等.罗丹明B萃取分光光度法测定黄磷电尘灰冶炼物料中镓[J].冶金分析,2013,33(8):64-67.LONG Ping,WU Jian,XIE Ke-qiang,et al.Determination of gallium in smelting materials of yellow phosphorus electric dust by extraction spectrophotometry with rhodamine B[J].Metallurgical Analysis,2013,33(8):64-67.
    [13]周凯红,张立锋,刘晓杰,等.电感耦合等离子体原子发射光谱法测定镧玻璃废粉中五氧化二铌、二氧化锆和二氧化钛[J].冶金分析,2016,36(12):44-49.ZHOU Kai-hong,ZHANG Li-feng,LIU Xiao-jie,et al.Determination of niobium pentoxide,zirconium dioxide and titanium dioxide in waste powder of lanthanum glass by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2016,36(12):44-49.
    [14]杨平,王鹏,费浩,等.电感耦合等离子体原子发射光谱法测定铀铌混合氧化物中镉、锡和锌[J].理化检验:化学分册,2018,54(2):196-199.YANG Ping,WANG Peng,FEI Hao,et al.ICP-AESDetermination of Cd,Sn and Zn in uranium-niobium mixed oxide[J].Physical Testing and Chemical Analysis Part B:Chemical Analysis,2018,54(2):196-199.
    [15]任玲玲.微波消解-电感耦合等离子体原子发射光谱法测定炉渣中硼[J].冶金分析,2018,38(2):71-75.REN Ling-ling.Determination of boron in furnace slag by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Metallurgical A-nalysis,2018,38(2):71-75.
    [16]宋祖峰,陆向东,荚江霞,等.电感耦合等离子体原子发射光谱法测定低碳低钛硅铁中痕量铌钒锆[J].冶金分析,2018,38(5):35-40.SONG Zu-feng,LU Xiang-dong,JIA Jiang-xia,et al.Determination of trace niobium,vanadium and zirconium in low carbon and low titanium ferrosilicon by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2018,38(5):35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700