用户名: 密码: 验证码:
两种地衣共生藻对铜和锌的耐受性及吸附特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tolerance and Adsorption of 2 Photobionts to Heavy Metal Cu and Zn
  • 作者:吉米拉木·加马力 ; 美合日班·阿不力米提 ; 古海尼沙·买买提 ; 艾尼瓦尔·吐米尔
  • 英文作者:Jimilamu JIAMALI;Miheriban ABILIMITI;Guhainisha MAIMAITI;Ainiwaer TUMIER;Life Science and Technology College of Xinjiang University;
  • 关键词:地衣共生藻 ; 细胞存活率 ; 重金属胁迫 ; 耐受性 ; 富集作用
  • 英文关键词:photobiont;;vitality;;heavy metal stress;;tolerance;;adsorption
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:新疆大学生命科学与技术学院;
  • 出版日期:2019-05-15 09:59
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.323
  • 基金:国家自然科学基金项目(31660009)
  • 语种:中文;
  • 页:SWJT201906010
  • 页数:7
  • CN:06
  • ISSN:11-2396/Q
  • 分类号:75-81
摘要
重金属污染生物修复中,藻类对重金属的吸附潜力引起诸多研究者的关注。为了探讨从地衣体分离培养的地衣共生藻对重金属Cu~(2+)、Zn~(2+)吸附特性及其耐受性的差异,以2种地衣共生藻为研究材料,采用Evan’s blue染色法、BCO和双硫腙分光光度法测定地衣共生藻细胞活率,培养液及藻体内的Cu~(2+)、Zn~(2+)含量。结果显示:不同浓度Cu~(2+)、Zn~(2+)胁迫下,2种地衣共生藻的细胞活力及重金属吸附特性有所差异,对Cu~(2+)胁迫的耐受性及吸附性为:P.E>B;Zn~(2+)胁迫下,培养至9d时耐受为:P.E> B,随着培养时间的延长P.E的细胞活力急剧下降并低于B,但吸附率还是处于P.E> B;并且2种地衣共生藻对Zn~(2+)胁迫的耐性及吸附性明显高于Cu~(2+)。研究发现,来自菌藻共生的特殊生物-地卷属地衣的两种藻类比一些自由生长的藻类对铜和锌胁迫具有较高的耐受性及吸附性。
        In the bioremediation of heavy metal pollution,the potential of algae absorbing heavy metals has attracted the attentions of many researchers. In order to investigate the difference in adsorption and tolerance of photobiont isolated from lichen body to heavy metals Cu~(2+) and Zn~(2+),2 photobionts(B and P.E)were used as research materials,Evan's blue staining method,BCO and dithizone spectrophotometric method were to determine the cell viability of photobiont,as well as the Cu~(2+) and Zn~(2+) content in culture medium and algae. The results showed that the cell viability and heavy metal adsorption of the 2 photobionts differed under different concentrations of Cu~(2+) and Zn~(2+). Tolerance to Cu~(2+) stress and adsorption was as following P.E > B. Under Zn~(2+) stress,the tolerance after 9 d of culture was P.E > B;as the culture time prolonged,the cell viability of P.E decreased sharply and was lower than that of B,but the adsorption rate was still at P.E > B. Moreover,the tolerance and adsorption of 2 photobionts to Zn~(2+) stress were significantly higher than Cu~(2+) stress. The study found that the adsorptions of 2 photobiont to Zn~(2+) stress were significantly higher than that to Cu~(2+) stress. The study found that the two algae species of Peltigera lichen,special organisms from the symbiosis of bacteria and algae-,had higher tolerance and adsorption to Cu~(2+) and Zn~(2+) stress than some freely-growing algae.
引文
[1]Barbara PS. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water;effects of some environmental factors[J]. Aquatic Toxicology, 2001, 52(3):241-249.
    [2]Yu RQ, Wang WX. Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metaltransfer to Daphnia magna[J].Environmental Pollution, 2004, 129(3):443-456.
    [3]汪大晕,徐新华,宋爽,等.工业废水中专向污染物处理手册[M].北京:化学工业出版社, 2000.
    [4]West LJA, Li K, Greenberg BM, et al. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content[J].Aquatic toxicology, 2003, 64(1):39-52.
    [5]?zverdi A, Erdem M. Cu+2, Cd+2 and Pb+2 adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. Hazard Mater,2006, 137(1):626-632.
    [6]Gekeler W, Grill E, Winnacker E Ludwig, et al, Algae sequester heavy metals via synthesis of phytochelatin complexes[J]. Arch Microbiol, 1988, 150:197-202.
    [7]浩云涛,李建宏,潘欣,等.椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集[J].湖泊科学, 2001, 13(2):158-169.
    [8]吴海一,詹冬梅,刘洪军,等.鼠尾藻对重金属锌、镉富集及排放作用的研究[J].海洋科学, 2010, 34(1):69-74.
    [9]薛培英,李庆召,颜昌,等.黑藻吸Cu2+机制研究[J].环境科学, 2011, 32(6):1614-1619.
    [10]Zakhama S, Dhaouadi H, Henni FM. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae[J]. Bioresource Technology, 2011, 102(8):786-796.
    [11]热依拉·热合曼,帕提古丽·依明,阿布都拉·阿巴斯. Cu2+胁迫对两种地衣细胞结构的影响[J].西北植物学报, 2015,35(1):57-64.
    [12]Barbara PS, Pirszel J, Renata K, et al. Arsenic availability, toxicity and direct role of GSH and phytochelatins in as detoxification in the green alga Stichococcus bacillaris[J]. Aquatic Toxicol, 2004,70(3):201-212.
    [13]Makiko K, Maiko A, Ryoko S, et al. Responses to desiccation stress in lichens are different from those in their photobionts[J]. Plant Cell Physiol, 2009, 50(4):879-888.
    [14]Ba?kor M, Hudak J, BackorováM. Comparision between growth response of autotrophic and heterotrophic populations of lichen photobiont Trebouxia irregularis(Chlorophyta)on Cu, Hg and Cd chlorides treatment[J]. Phyton;annals rei botanicae, 1998, 38(2):239-250.
    [15] Bartak M, Váczi P, Dzubaj A. Uptake photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium[J]. Bryologist,2001, 110(6):100-107.
    [16] Gekeler W, Grill E, Winnacker EL, et al. Algae sequester heavy metals via synthesis of phytochelatin complexes[J]. Arch Microbiol, 1988, 150(1):197-202.
    [17]李翠萍,吴民耀,王宏元. 3种半数致死浓度计算方法之比较[J].动物医学进展, 2012, 33(9):92-94.
    [18]林坚,张优,珍邝萍. BCO分光光度法快速测定含铜三氯化铁蚀刻废液中的铜[J].环境工程, 2002, 20(3):62-65.
    [19]徐秀杰,冯彩婷,元伟.分光光度法测定豆类中的锌含量[J].周口师范学院学报, 2016, 33(5):91-94
    [20]Laib E, Leghouchi E. Cd, Cr, Cu, Pb and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel(Algeria)[J]. Environmental Monitoring and Assessment, 2012, 184(3):1711-1718.
    [21]Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:a summary of recent studies[J]. Journal of Hazardous Materials, 2009, 162(23):616-645.
    [22]Terry PA, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans[J].Chemosphere, 2002, 47(3):249-255.
    [23]Solisio C, Lodi A, Soletto D, et al. Cadmium biosorption on Spirulina platensis biomass[J]. Bioresource Echnology, 2008,99(13):5933-5937.
    [24]Ferreira LS, Rodrigues MS, de Carvalho JCM, et al. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira(Spirulina)platensis and Chlorella vulgaris. I. Single metal systems[J].Chemical Engineering Journal, 2011, 173(2):326-333.
    [25]吴珊,孙福红,鄢元波,等.太湖蓝藻对Sb(V)的生物吸附作用[J].环境科学研究, 2012, 25(7):764-769.
    [26]K?nig-Péter A, Csudai C, Felinger A, et al. Potential of various biosorbents for Zn(II)removal[J]. Water, Air&Soil Pollution,2014, 225(9):2089-2090.
    [27]Ba?kor M, Hudak J, BackorováM. Comparision between growth response of autotrophic and heterotrophic populations of lichen photobiont Trebouxia irregularis(Chlor ophyta)on Cu, Hg and Cd chlorides treatment[J]. Phyton;annals rei botanicae, 1998,38(2):239-250.
    [28]álvareza R, Hoyoa A, Francisco GB, JoséRA, et al. Different strategies to achieve Pbtolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea[J]. Journal of Plant Physiology, 2012, 169(18):1797-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700