用户名: 密码: 验证码:
黑土农田冻结-融化期土壤剖面温度变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil Profile Temperature Variation in Farmlands During Freeze-thaw Period in Mollisol Region
  • 作者:王一菲 ; 郑粉莉 ; 周秀杰 ; 覃超 ; 富涵 ; 左小锋 ; 刘刚 ; 张加琼
  • 英文作者:Wang Yifei;Zheng Fenli;Zhou Xiujie;Qin Chao;Fu Han;Zuo Xiaofeng;Liu Gang;Zhang Jiaqiong;Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources;Heilongjiang Meteorological Data Center;
  • 关键词:土壤温度 ; 冻融循环 ; 气温 ; 东北黑土区
  • 英文关键词:soil temperature;;freeze-thaw cycle;;air temperature;;Mollisol region in Northeast China
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院水利部水土保持研究所;黑龙江省气象数据中心;
  • 出版日期:2019-06-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:v.39;No.230
  • 基金:国家自然科学基金面上项目“黑土区多种外营力互作的坡面侵蚀过程与机制”(41571263);; 国家重点研发计划战略性国际科技创新合作重点专项“黑土侵蚀防治机理与调控技术”(2016YFE0202900)
  • 语种:中文;
  • 页:STTB201903010
  • 页数:8
  • CN:03
  • ISSN:61-1094/X
  • 分类号:63-70
摘要
[目的]研究东北黑土区农地土壤温度变化特征,为冻融作用程度量化分析和冻融作用对土壤侵蚀影响提供基础数据。[方法]利用2015—2018年黑龙江省宾州河流域典型农地2 m土壤剖面11月至翌年4月土壤温度观测资料以及气温数据,分析了冻结和融化过程中土壤温度变化特征以及土壤温度对气温变化的响应,确定土壤冻结与融化过程中耕层土壤冻融循环次数。[结果] 11月至翌年2月的冻结期,土壤温度随土层深度的增加而增加;3—4月份土壤温度梯度发生反向改变,当土壤完全消融后,土壤温度随着土层深度的增加而递减,土壤最大冻结深度为80 cm。研究结果还表明,0—60 cm土层的土壤温度均与气温呈极显著正相关,其相关性随土壤深度增加而减小;而80 cm以下土层,土壤温度均与气温呈负相关。[结论]研究区土壤冻结和融化过程分别呈单向冻结和双向融化现象,冻融循环主要发生在农地耕层0—20 cm土层,其年最大冻融循环次数分别为12次和7次,为设计黑土冻融循环模拟试验提供了数据支持。
        [Objective] This study explored the characteristics of soil temperature changes in farmlands of Mollisol region in Northeast China in order to provide basic data for quantifying the degree of freeze-thaw action and its impacts on soil erosion. [Methods] Based on the data of soil temperature in 2 m soil profile and air temperature from November to next April in 2015—2018 at the typical farmland in Binzhou River basin of Heilongjiang Province, we analyzed the characteristics of soil temperature variation and its responses to air temperature changes during freeze-thaw processes and freeze-thaw times in plough layer in farmlands. [Results] The soil temperature increased with the increase of soil depth from November to next February, while declined with the increase of soil depth when the soil was completely melted. The maximum frozen depth was 80 cm in farmlands of the research region. Meanwhile, there was a significant positive correlation between soil temperature in 0—60 cm depth and air temperature, and this correlation decreased with the increase of soil depth. In contrast, soil temperature under 80 cm depth was negatively correlated with air temperature. [Conclusion] There was a unidirectional freezing and bidirectional thawing in the study area. The freeze-thaw action mainly occurred at 0—20 cm in the topsoil layer of farmland, both maxinum freeze-thaw cycle times were 12 and 7, respectively, which provided the scientific basis for the design of simulated Mollisol freeze-thaw cycle experiments.
引文
[1] Tang Liang,Cong Shengyi,Geng Lin,et al.The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J].Cold Regions Science & Technology,2017,145:197-207.
    [2] Viklander P.Permeability and volume changes in till due to cyclic freeze/thaw[J].Canadian Geotechnical Journal,1998,35(3):471-477.
    [3] 王恩姮,赵雨森,陈祥伟.季节性冻融对典型黑土区土壤团聚体特征的影响[J].应用生态学报,2010,21(4):889-894.
    [4] 张瑞芳,王瑄,范昊明,等.我国冻融区划分与分区侵蚀特征研究[J].中国水土保持科学,2009,7(2):24-28.
    [5] 张瑞芳,范昊明,王瑄,等.辽宁省冻融侵蚀发生的气候环境条件分析[J].水土保持研究,2008,15(2):8-12.
    [6] 李卫朋,范继辉,沙玉坤,等.藏北高寒草原土壤温度变化与冻融特征[J].山地学报,2014,32(4):407-416.
    [7] 胡伟,张兴义,严月.不同土地利用方式下冻融期黑土水热过程观测研究[J].土壤与作物,2018,7(3):312-323.
    [8] 张少良,张兴义,于同艳,等.秸秆覆盖对农田黑土春季地温的影响[J].干旱区资源与环境,2010,24(6):169-173.
    [9] He Jin,Li Hongwen,Kuhn N J,et al.Effect of ridge tillage,no-tillage,and conventional tillage on soil temperature,water use,and crop performance in cold and semi-arid areas in Northeast China[J].Australian Journal of Soil Research,2010,48(8):737-744.
    [10] Shen Yan,Mclaughlin N,Zhang Xiaoping,et al.Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China[J].Scientific Reports,2018,8(1):4500.
    [11] 张科利,彭文英,王龙,等.东北黑土区土壤剖面地温和水分变化规律[J].地理研究,2007,26(2):314-320.
    [12] 李帅,王萍,陈莉,等.黑龙江省春季浅层(0—20 cm)地温变化特征及预报[J].冰川冻土,2014,36(1):55-62.
    [13] 赵显波,刘铁军,许士国,等.季节冻土区黑土耕层土壤冻融过程及水分变化[J].冰川冻土,2015,37(1):233-240.
    [14] Zhao Yusen,Wang Enheng,Cruse R M,et al.Characterization of seasonal freeze-thaw and potential impacts on soil erosion in Northeast China[J].Canadian Journal of Soil Science,2012,92(3):567-571.
    [15] 吕红玉,张林媛,张宏茹,等.1981—2010年三江平原40—320 cm深地温变化特征[J].冰川冻土,2012,34(6):1346-1352.
    [16] Henry H A L.Climate change and soil freezing dynamics:historical trends and projected changes[J].Climatic Change,2008,87(3/4):421-434.
    [17] Frauenfeld O W,Zhang Tingjun.An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes[J].Environmental Research Letters,2011,6(4):044024(8pp).
    [18] 高思如,曾文钊,吴青柏,等.1990-2014年西藏季节冻土最大冻结深度的时空变化[J].冰川冻土,2018,40(2):223-230.
    [19] Peng Xiaoqing,Frauenfeld O W,Cao Bin,et al.Response of Changes in Seasonal Soil Freeze/Thaw State to Climate Change from 1950 to 2010 across China[J].Journal of Geophysical Research:Earth Surface,2016(121):1984-2000.
    [20] 范昊明,张瑞芳,周丽丽,等.气候变化对东北黑土冻融作用与冻融侵蚀发生的影响分析[J].干旱区资源与环境,2009,23(6):48-53.
    [21] 王飞,范昊明,郭成久,等.我国两大冻融侵蚀区气候环境变化对比分析[J].生态环境,2008(1):173-177.
    [22] 冯志珍,郑粉莉,易祎.薄层黑土微生物生物量碳氮对土壤侵蚀—沉积的响应[J].土壤学报,2017,54(6):1332-1344.
    [23] 王彬,郑粉莉,王玉玺.东北典型薄层黑土区土壤可蚀性模型适用性分析[J].农业工程学报,2012,28(6):126-131.
    [24] 陈继康,李素娟,张宇,等.不同耕作方式麦田土壤温度及其对气温的响应特征:土壤温度日变化及其对气温的响应[J].中国农业科学,2009,42(7):2592-2600.
    [25] 李栋梁,柳苗,钟海玲,等.青藏铁路沿线地面气温和地温的年际变化趋势及与地形的关系[J].高原气象,2005,24(5):694-699.
    [26] 杜军,李春,廖健,等.近45年拉萨浅层地温对气候变化的响应[J].气象,2007,33(10):61-67.
    [27] 巩玉玲,王兆锋,张镱锂,等.拉萨灌丛草甸区土壤温度变化特征[J].土壤学报,2016,53(2):411-420.
    [28] 俞洁辉,刘新圣,罗天祥,等.念青唐古拉山北麓草甸海拔分布上限土壤温湿度的季节变化[J].地理学报,2012,67(9):1246-1254.
    [29] 王澄海,尚大成.藏北高原土壤温、湿度变化在高原干湿季转换中的作用[J].高原气象,2007,26(4):677-685.
    [30] 刘小燕,刘巧玲,刘廷玺,等.科尔沁草甸地冻融期土壤水热盐动态迁移规律[J].水科学进展,2015,26(3):331-339.
    [31] 樊贵盛,郑秀清,贾宏骥.季节性冻融土壤的冻融特点和减渗特性的研究[J].土壤学报,2000,37(1):24-32.
    [32] 刘帅,于贵瑞,浅沼顺,等.蒙古高原中部草地土壤冻融过程及土壤含水量分布[J].土壤学报,2009,46(1):46-51.
    [33] 王学佳,杨梅学,万国宁.藏北高原D105点土壤冻融状况与温湿特征分析[J].冰川冻土,2012,4(1):56-63.
    [34] 边晴云,吕世华,文莉娟,等.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究,2017,34(4):906-911.
    [35] 付强,颜培儒,李天霄,等.冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J].农业工程学报,2017,33(20):98-105.
    [36] Wen Lijuan,Nagabhatla N,Lü Shihua,et al.Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models[J].Advances in Atmospheric Sciences,2013,30(5):1449-1460.
    [37] 边晴云,吕世华,陈世强,等.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象,2016,35(3):621-632.
    [38] Fu Qiang,Hou Rijie,Li Tianxiao,et al.The critical depth of freeze-thaw soil under different types of snow cover[J].Water,2017,9(6):370-387.
    [39] 付强,侯仁杰,王子龙,等.冻融期积雪覆盖下土壤水热交互效应[J].农业工程学报,2015,31(15):101-107.
    [40] 赵显波,刘振平,许士国,等.季节冻土区黑土耕层土壤冻融循环期湿度与温度变化研究[J].冰川冻土,2015,37(4):931-939.
    [41] 高红贝,邵明安.温度对土壤水分运动基本参数的影响[J].水科学进展,2011,22(4):484-494.
    [42] 焦永亮,李韧,赵林,等.多年冻土区活动层冻融状况及土壤水分运移特征[J].冰川冻土,2014,36(2):237-247.
    [43] 付强,侯仁杰,李天霄,等.冻融土壤水热迁移与作用机理研究[J].农业机械学报,2016,47(12):99-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700