用户名: 密码: 验证码:
木荷单木生长模型构建及生长特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of Growth Model and Analysis of Growth Characteristics of Schima superba
  • 作者:莫辉 ; 赵建强
  • 英文作者:MO Hui;ZHAO Jianqiang;Lingnan Integrated Exploration and Design Institute of Guangdong Province;
  • 关键词:木荷 ; 生长模型 ; 生长特征 ; 平均生长
  • 英文关键词:Schima superba;;growth model;;growth characteristics;;average growth
  • 中文刊名:GDLY
  • 英文刊名:Forestry and Environmental Science
  • 机构:广东省岭南综合勘察设计院;
  • 出版日期:2019-04-20
  • 出版单位:林业与环境科学
  • 年:2019
  • 期:v.35
  • 语种:中文;
  • 页:GDLY201902010
  • 页数:7
  • CN:02
  • ISSN:44-1723/S
  • 分类号:59-65
摘要
以木荷Schima superba次生异龄林为研究对象,选取3种经验生长方程和3种理论生长方程拟合木荷单木的直径、树高以及材积的生长过程,然后利用连年生长量与平均生长量的关系分析木荷直径、树高以及材积的生长特征。结果表明,理论生长方程在模拟精度以及生物学解释上均优于经验生长方程,木荷的单木直径最优生长方程为Richards方程:D=37.21×(1-e~(-0.0496×A))~(2.0102),树高最优生长方程为Gompertz方程:H=19.43×e~(-2.7091×e-0.0848×A),材积最优生长方程为Logistic方程:■木荷单木生长模型的构建及生长特征的分析为木荷次生异龄林的质量精准提升提供一定的参考价值。
        Based on the Schima superba secondary forest,three empirical growth equations and three theoretical growth equations were selected to fit the growth process of the diameter, height and volume of the wood,then the relationship between annual growth and average growth was used to analyze the growth characteristics of S. superba in diameter, height and volume. The results showed that, the theoretical growth equation was superior to the empirical growth equation in the simulation precision and biological interpretation,the optimal growth equation of the diameter was the Richards equation, the expression was D=37.21×(1-e~(-0.0496×A))~(2.0102), the optimal growth equation of the height was the Gompertz equation, the expression was H=19.43×e~(-2.7091×e-0.0848×A), the optimal growth equation of the volume was the Logistic equation,the expression was■.The establishment of the growth model of S. superba providedcertain reference for the accurate quality improvement of S. superba secondary forest.
引文
[1]谭家得,柯欢,陈杰,等.华南地区3个树种的抗火性能分析[J].林业与环境科学,2016,32(6):86-90.
    [2]朱爱光.生物防火林带树种木荷育苗技术[J].广东林业科技,2005,21(4):100.
    [3]王秀花,马丽珍,马雪红,等.木荷人工林生长和木材基本密度[J].林业科学,2011,47(7):138-144.
    [4]曾思齐,甘静静,肖化顺,等.木荷次生林林木更新与土壤特征的相关性[J].生态学报,2014,34(15):4242-4250.
    [5]孟伟,陈彩虹,胡焕香,等.青石冈林场木荷直径结构研究[J].林业资源管理,2013(2):89-93.
    [6]楚秀丽,王艺,金国庆,等.不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化[J].林业科学,2014,50(6):152-159.
    [7]陈聪,李志良,罗万业,等.不同坡地条件木荷人工林的生长差异研究[J].林业资源管理,2015(5):70-75.
    [8]李佳,邵全琴,黄麟,等.我国马尾松、杉木、湿地松生长方程研究进展[J].西北林学院学报,2010,25(4):151-156.
    [9]林丽平,徐期瑚,罗勇,等.广东主要乡土阔叶树种单木生长模型构建[J].林业与环境科学,2018,34(3):14-22.
    [10]于秀勇.杉木人工林单木生长模型的研究[D].福州:福建农林大学,2009.
    [11]孟宪宇,谢守鑫.华北落叶松人工林单木生长模型的研究[J].北京林业大学学报,1992(S5):96-104.
    [12]刘微.落叶松人工林单木生长模型的研究[D].哈尔滨:东北林业大学,2010.
    [13]BAO T,JIANG G.The Analysis of measured data of plant and tree growth with Richards and Logistic Model[J].Advanced Materials Research,2011,1269(243):2491-2497.
    [14]邓成,吕勇,雷渊才,等.以相对直径为竞争指标的单木直径生长模型研究[J].林业资源管理,2011(1):40-43.
    [15]COLIN PDB.A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation[J].Annals of Botany,1999,83(6):713-723.
    [16]田玉梅,于治军,方昆升,等.用含有双可变参数的差分生长模型模拟胸径生长过程[J].林业与环境科学,2018,34(4):36-42.
    [17]孟宪宇.测树学[M].北京:中国林业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700