用户名: 密码: 验证码:
典型生物质能源的转化途径分析对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Conversion Methods for Production of Bioenergy from Some Typical Bioresources
  • 作者:张健 ; 胡柠檬 ; 孙向前 ; 陈佳静 ; 何亮 ; 关清卿 ; 陈冬 ; 杨世波
  • 英文作者:ZHANG Jian;HU Ning-meng;SUN Xiang-qian;CHEN Jia-jing;HE Liang;GUAN Qing-qing;CHEN Dong;YANG Shi-bo;Faculty of Chemical Engineering,Kunming University of Science and Technology;Faculty of Environmental Science and Engineering,Kunming University of Science and Technology;Faculty of Energy and Environmental Science,Yunnan Normal University;
  • 关键词:生物质 ; 生物质 ; 能源化转化 ; 超临界流体 ; 催化
  • 英文关键词:biomass;;biomass energy;;energy conversion;;supercritical fluid;;catalysis
  • 中文刊名:ZHZZ
  • 英文刊名:Paper and Paper Making
  • 机构:昆明理工大学化学工程学院;昆明理工大学环境工程学院;云南师范大学能源与环境科学学院;
  • 出版日期:2019-01-15
  • 出版单位:纸和造纸
  • 年:2019
  • 期:v.38;No.250
  • 语种:中文;
  • 页:ZHZZ201901006
  • 页数:9
  • CN:01
  • ISSN:11-2709/TS
  • 分类号:21-29
摘要
随着社会经济的不断发展,能源消耗也逐渐增大,寻找、开发可替代的清洁能源成为当前研究的热点。在众多的清洁能源中,生物质能是一种广泛存在于禾草类、木材、藻类、动物油、废弃油脂和其他微生物油脂等有机生命体中的可再生能源。然而,由于这些生命体中所携带生物质能的主要物质组成各异,在采用物理、化学以及生物的方法进行生物质能源的提取时,往往会因为所研究或处理的生物质资源的不同而造成生物质能的转化效果差异性大。因此,厘清在生物质能提取过程中各转化条件下(温度、压力、时间、催化剂、介质体系等)各类生物质有机大分子(纤维素、半纤维素、木素、油脂等)的转化效率,对我们选择合理的转化路径是至关重要的。基于此,本文首先综述了生物质原料的主要化学组成,然后针对这些典型生物质化学成分进行相应生物质能转化路线的介绍和功效分析,最后,对于其中颇具应用前景的超临界流体下的生物质能转化技术进行重点研究,以期为超临界流体中各类生物质资源的高效能源化转化过程的工业化应用提供智力支持。
        With the continuous development of social economy and thus the consumption of fossil energy, development of an alternative clean energy has become a hot research topic. Among many clean energy sources, biomass energy, which widely exists in grass, wood, algae, animal oil, waste oil and other microbial oils and other organisms. However, due to the main components of bioresources and the conversion methods are different, the conversion yield of bioenergy varies greatly. Therefore, it is very important to clarify the conversion efficiency of main macromolecules(cellulose, hemicellulose, lignin, oil, etc.) of various biomasses under different conversion conditions(temperature, pressure, time, catalyst, reaction medium, etc.). Therefore, in this study, the main chemical compositions of biomass raw materials were firstly summarized. Then, the corresponding conversion routes of biomass energy and the conversion efficiency have been also investigated. Finally, the biomass energy conversion process in supercritical fluid medium was studied in order to provide intellectual support for the industrialization preparation of bioenergy from various biomass resources.
引文
[1]Ding H,Ye W,Wang Y,et al.Process intensification of transesterification for biodiesel production from palm oil:Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids[J].Energy,2018,144:957-967.
    [2]刘国华,谷屹,孙庆丰,等.新能源发展趋势研究[J].石油石化绿色低碳,2018(1):6-14.
    [3]刘艳英.内蒙古煤炭资源可持续开发利用初步研究[D].呼和浩特:内蒙古大学,2006.
    [4]詹慧龙,严昌宇,杨照.我国农业生物质能产业发展研究[J].改革与开放,2010,26(19):9-11.
    [5]刘莹莹.我国生物质能利用及其对碳减排的影响[D].合肥:合肥工业大学,2011.
    [6]李伟伟,刘荣章,李建华.农业循环经济与废弃物资源化利用策略[J].台湾农业探索,2006(2):36-39.
    [7]梁隽.农村新能源[M].贵阳:贵州科技出版社,2007.
    [8]李改莲,王远红,杨继涛,等.中国生物质能的利用状况及展望[J].河南农业大学学报,2004,38(1):100-104.
    [9]许凤,钟新春,孙润仓,等.秸杆中半纤维素的结构及分离新方法综述[J].林产化学与工业,2005,25(b10):179-182.
    [10]石淑兰,胡惠仁.醌类助剂在碱法蒸煮中的催化效果[J].中国造纸,2001,20(1):14-17.
    [11]何亮.纤维素纤维纯化与溶解过程中的参数检测方法及传质与反应行为研究[D].广州:华南理工大学,2017.
    [12]Tunc,Sefik M.Relationship between alkaline pulp yield and the mass fraction and degree of polymerization of cellulose in pulp[J].Journal of Pulp&Paper Science,2003,30(8):211-217.
    [13]陈洪章.蒸汽爆碎技术原理及应用[M].化学工业出版社,2007.
    [14]黎先发,罗学刚.木质素在生物化工领域的应用研究进展[J].化工进展,2007,26(12):1722-1726.
    [15]范明慧.木质素催化转化制芳香化合物的研究[D].合肥:中国科学技术大学,2014.
    [16]裴继诚.植物纤维化学[M].第4版.北京:中国轻工业出版社,2012.
    [17]杨智翔.超临界甲醇中木质素液化制备酚类化合物研究[D].昆明:昆明理工大学,2017.
    [18]Chattopadhyay S,Karemore A,Das S,et al.Biocatalytic production of biodiesel from cottonseed oil:Standardization of process parameters and comparison of fuel characteristics[J].Applied Energy,2011,88(4):1251-1256.
    [19]Beims R F,Botton V,Ender L,et al.Effect of degree of triglyceride unsaturation on aromatics content in bio-oil[J].Fuel,2018,217:175-184.
    [20]韩军兴.植物油脱氧制备柴油类烃的催化剂及反应机理研究[D].杭州:浙江大学,2012.
    [21]钟耕.绿色工艺制备生物柴油探索--废油脂酶法制备生物柴油研究[D].北京:中国农业科学院,2007.
    [22]Endalew A K,Kiros Y,Zanzi R.Inorganic heterogeneous catalysts for biodiesel production from vegetable oils[J].Biomass&Bioenergy,2011,35(9):3787-3809.
    [23]丁启朔.生物质能转化技术的发展趋势[J].可再生能源,1998(5):21-22.
    [24]雷学军,罗梅健.生物质能转化技术及资源综合开发利用研究[J].中国能源,2010,32(1):22-28.
    [25]王大龙.餐厨垃圾干式高温两相厌氧发酵性能研究[D].天津:天津大学,2017.
    [26]Liu Y,Whitman W B.Metabolic,phylogenetic,and ecological diversity of the methanogenic archaea[J].Annals of the New York Academy of Sciences,2010,1125(1):171-189.
    [27]Balat M,Balat H,?Z C.Progress in bioethanol processing[J].Progress in Energy&Combustion Science,2008,34(5):551-573.
    [28]Bajpai P.Production of bioethanol[M].Springer India,2013.
    [29]Yang B,Lu Y P.The promise of cellulosic ethanol production in China[J].Journal of Chemical Technology&Biotechnology Biotechnology,2010,82(1):6-10.
    [30]Ayhan Demirbas,G?nen?Arin.An Overview of Biomass Pyrolysis[J].Energy Sources,2002,24(5):471-482.
    [31]Balat M,Balat H,,Kirtay E,et al.Main routes for the thermoconversion of biomass into fuels and chemicals.Part 1:Pyrolysis systems[J].Energy Conversion&Management,2009,50(12):3147-3157.
    [32]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [33]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报,2004,20(2):242-245.
    [34]Mohan D,Pittman C U,Steele P H.Pyrolysis of Wood/Biomass for Bio-Oil:A Critical Review[J].Energy&Fuels,2006,20(3):848-889.
    [35]张丽丽.生物油的特性、提质及应用[J].安徽化工,2011,37(2):5-7.
    [36]Cornelissen T,Yperman J,Reggers G,et al.Flash co-pyrolysis of biomass with polylactic acid.Part 1:Influence on bio-oil yield and heating value[J].Fuel,2008,87(7):1031-1041.
    [37]常杰.生物质液化技术的研究进展[J].现代化工,2003,23(9):13-16.
    [38]王娅莉.玉米秸秆纤维素在亚/超临界甲醇和环己烷中液化过程研究[D].广州:华南农业大学,2016.
    [39]王为国,李自豪,覃远航,等.稻草秸秆超低酸水解及水解产物分析[J].石油化工,2013,42(3):339-345.
    [40]刘倩.基于组分的生物质热裂解机理研究[D].杭州:浙江大学,2009.
    [41]Guo Y,Wang S Z,Xu D H,et al.Review of catalytic supercritical water gasification for hydrogen production from biomass[J].Renewable&Sustainable Energy Reviews,2010,14(1):334-343.
    [42]Matsumura Y,Minnowa T,Potic B,et al.Biomass gasification in near-and super-critical water:Status and prospects[J].Biomass&Bioenergy,2005,29(4):269-292.
    [43]Guan Q,Zzeng Y,Shen J,et al.Selective hydrogenation of phenol by phosphotungstic acid modified Pd/Ce-AlOx catalyst in hightemperature water system[J].Chemical Engineering Journal,2016,299:63-73.
    [44]Balat M,Balat H,,Kirtay E,et al.Main routes for the thermoconversion of biomass into fuels and chemicals.Part 2:Gasification systems[J].Energy Conversion&Management,2009,50(12):3158-3168.
    [45]李崇聪,张博闻,马丹竹,等.结构参数和操作参数对生物质气化制氢技术的影响[J].能源化工,2016,37(5):17-22.
    [46]张志华.Ni/半焦催化剂催化生物质焦油水蒸气重整反应研究[D].太原理工大学,2018.
    [47]李季,孙佳伟,郭利,等.生物质气化新技术研究进展[J].热力发电,2016,45(4):1-6.
    [48]赵增立,李海滨,吴创之,等.生物质等离子体气化研究[J].太阳能学报,2005,26(4):468-472.
    [49]Talebian-Kiakalaieh A,Amin N A S,Mazaheri H.A review on novel processes of biodiesel production from waste cooking oil[J].Applied Energy,2013,104(2):683-710.
    [50]Kulkarni M G,Gopinath R,Meher L C,et al.Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification[J].Green Chemistry,2006,8(12):1056-1062.
    [51]JI L,Xiao P,Meng L,et al.Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Br?nstedLewis acidic ionic liquid[J].Applied Energy,2014,115(C):438-444.
    [52]Mercantili L,Davis F,Higson S P J.Ultrasonic Initiation of the Alkaline Hydrolysis of Triglycerides(Saponification)Without Phase Catalysis[J].Journal of Surfactants&Detergents,2014,17(1):133-141.
    [53]Sheikh R,Choi M S,IM J S,et al.Study on the solid acid catalysts in biodiesel production from high acid value oil[J].Journal of Industrial&Engineering Chemistry,2013,19(4):1413-1419.
    [54]Shu Q,Gao J,Nawaz Z,et al.Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst[J].Applied Energy,2010,87(8):2589-2596.
    [55]Srivastava G,Paul A K,Goud V V.Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition[J].Energy Conversion&Management,2018,156:269-278.
    [56]喻江东.褐煤及其气化中间产物超临界水非均相催化气化研究[D].昆明:昆明理工大学,2017.
    [57]Kurnik R T,Reid R C.Solubility of solid mixtures in supercritical fluids[J].Fluid Phase Equilibria,1982,8(1):93-105.
    [58]关清卿,宁平,谷俊杰.亚/超临界水技术与原理[M].北京:冶金工业出版社,2014.
    [59]Gu Rdia E,Laria D,Mart J.Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions[J].Journal of Physical Chemistry B,2006,110(12):6332.
    [60]Akiya N,Savage P E.Roles of Water for Chemical Reactions in High-Temperature Water[J].Cheminform,2010,33(43):293.
    [61]Reddy S N,Nanda S,Dalai A K,et al.Supercritical water gasification of biomass for hydrogen production[J].International Journal of Hydrogen Energy,2014,39(13):6912-6926.
    [62]胡珺.木质素定向解聚制备单酚类化合物的研究[D].南京:东南大学,2016.
    [63]Kruse A,T.Henningsen,A.S?nag A,et al.Biomass Gasification in Supercritical Water:Influence of the Dry Matter Content and the Formation of Phenols[J].Industrial&Engineering Chemistry Research,2003,42(16):345-360.
    [64]王青.贵金属改性碳化钼催化剂在低温水汽变换反应中的催化性能研究[D].大连:大连理工大学,2014.
    [65]郭琦.生物质超临界水气化制氢过程的能分析与(火用)分析[D].西安:西安建筑科技大学,2006.
    [66]张旭,王子宗.煤基合成气甲烷化反应过程的热力学计算与分析[J].化学工程,2016,44(11):48-53.
    [67]王燕杰,应浩,江俊飞.生物质二氧化碳气化综述[J].林产化学与工业,2013,33(6):121-127.
    [68]Guo L J,Lu Y J,Zhang X M,et al.Hydrogen production by biomass gasification in supercritical water:A systematic experimental and analytical study[J].Catalysis Today,2007,129(3):275-286.
    [69]Yukananto R,Pozarlik A,Bramer E,et al.Numerical Modelling of Char Formation during Glucose Gasification in Supercritical Water[J].Journal of Supercritical Fluids,2018.
    [70]何建辉.生物质直接液化的实验研究[D].合肥:合肥工业大学,2006.
    [71]邓勇.生物质热解液化过程中炭的作用机理研究[D].武汉:华中科技大学,2015.
    [72]黄华军.典型生物质在亚/超临界有机溶剂中的液化行为[D].长沙:湖南大学,2013.
    [73]Minowa T,Fang Z,Ogi T,et al.Decomposition of Cellulose and Glucose in Hot-Compressed Water under Catalyst-Free Conditions[J].Journal of Chemical Engineering of Japan,2004,31(1):131-134.
    [74]刘丽燕.催化氢解木质素生成酚类物质的研究[D].北京:北京理工大学,2015.
    [75]Ahmed I,Gupta A K.Syngas yield during pyrolysis and steam gasification of paper[J].Applied Energy,2009,86(9):1813-1821.
    [76]Miao R,Zhang Q,Shi Y,et al.Liquefaction of lignite with Ru/Ccatalyst in supercritical ethanol[J].Rsc Advances,2017,7(9):5402-5411
    [77]杨建斌,陈明锴,汤世华,等.超临界流体技术制备生物柴油[J].中国油脂,2008,33(1):40-42.
    [78]G u a n Q Q,H u a S,J i n g L,e t a l.B i o d i e s e l f r o m transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent:process,mechanism and application[J].Applied Energy,2016,164:380-386.
    [79]Guan Q,Li Y,Chen Y,et al.Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification[J].Rsc Advances,2017,7(12):7250-7258.
    [80]Demirbas A.Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods:a survey[J].Energy Conversion&Management,2003,44(13):2093-2109.
    [81]Sasaki T,Suzuki T,Okada F.Method for preparing fatty acid esters and fuel comprising fatty acid esters[M].US.2001.
    [82]巩桂芬,张明玉,黄玉东,等.木质纤维素在亚/超临界水中液化的初步研究[J].应用化工,2008,37(11):1275-1277.
    [83]刘兴泉,贾朝霞.负载型碱催化剂的制备及其在酯交换和醇,胺羰化反应中的应用[J].催化学报,2000,21(6):583-585.
    [84]邬国英,林西平,巫淼鑫,等.棉籽油间歇式酯交换反应动力学的研究[J].高校化学工程学报,2003,17(3):314-318.
    [85]Schuchardt U,Vargas R M,Gelbard G.Alkylguanidines as catalysts for the transesterification of rapeseed oil[J].Journal of Molecular Catalysis A Chemical,1995,99(2):65-70.
    [86]侯相林,乔欣刚,齐永琴,等.亚临界甲醇相固体碱催化大豆油酯交换制备生物柴油[J].中国油脂,2006,31(10):37-39.
    [87]Saka S,Kusdian A D.Biodiesel fuel from rapeseed oil as prepared in supercritical methanol[J].Fuel,2001,80(2):225-231.
    [88]Tateno T,Sasaki T.Process for producing fatty acid esters and fuels comprising fatty acid ester[M].EP.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700