用户名: 密码: 验证码:
南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biogenic barium, carbon and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean
  • 作者:倪建宇 ; 赵军 ; 江巧文 ; 姚旭莹
  • 英文作者:Ni Jianyu;Zhao Jun;Jiang Qiaowen;Yao Xuying;Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources;School of Marine and Geosciences, Ocean University of China;
  • 关键词:生物钡 ; 有机质 ; 碳氮同位素 ; 生产力 ; 南海北部
  • 英文关键词:biogenic barium;;organic matter;;nitrogen and carbon isotopes;;primary productivity;;northern South China Sea
  • 中文刊名:SEAC
  • 机构:自然资源部第二海洋研究所海底科学重点实验室;中国海洋大学海洋地球科学学院;
  • 出版日期:2019-02-15
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:大洋矿产资源勘探开发专项基金项目(DY125-14-E-01);; 国际合作项目“东亚大陆边缘现代地质过程与灾害机理”(GASI-GEOGE-05)
  • 语种:中文;
  • 页:SEAC201902004
  • 页数:11
  • CN:02
  • ISSN:11-2055/P
  • 分类号:45-55
摘要
通过对采集自南海北部的D06和S0612两个短柱状沉积物样品中的不同赋存形态钡、有机碳和生物硅的含量以及有机质碳氮同位素组成的分析,结果表明沉积物中的钡主要以碎屑钡和自生的生物钡形式存在。沉积物中生物钡的含量在10.3~385.2μg/g之间,平均值为177.0μg/g,据此计算的新生产力在12.3~146.7 mg/(d·m~2)(以碳计)之间,平均为78.9 mg/(d·m~2);D06站计算的结果和附近站位的实测值相当。沉积物中有机碳的含量在0.64%~1.34%之间,平均值为0.89%,C/N比值为4.96~5.93,平均值为5.54。有机碳的δ~(13)C值在-22.98‰~-20.73‰之间,平均值为-21.46‰,依据端元组份同位素组成计算的陆源有机质比率显示,D06站位的有机质主要来自海洋生物,而S0612站位则受陆源有机质的影响较大。沉积物中有机质的δ~(15)N值在3.96‰~6.29‰之间,平均值为5.26‰,反映的是该海区氮源的同位素组成,而不受硝酸盐利用率的影响。
        In this paper, we analyze different forms of barium, biogenic silica, the organic carbon(OC), total nitrogen concentrations and their stable isotopic compositions(δ~(13)C and δ~(15)N) in two short sediment cores sampled from the northern South China Sea(SCS). The results show that the detrital and biogenic barium are the main forms of barium in sediments. Based on the sequential extraction leaching, the biogenic barium content in sediments is between 10.3 μg/g and 385.2 μg/g with an average of 177.0 μg/g. Estimated the past productivity using the biogenic barium is between 12.3 mg/(d·m~2) and 146.7 mg/(d·m~2) with an average of 78.9 mg/(d·m~2), and is comparable with the modern values near D06 station. The stratigraphic profiles of OC concentration, OC/TN ratios, δ~(13)C and δ~(15)N for the past about 400 years indicate that these two cores display distinctive histories. The δ~(13)C values of sedimentary organic matter changed between-22.98‰ and-20.73‰. The relatively narrow δ~(13)C range of sedimentary organic carbon with a mean value close to-21.46‰ indicates that the sedimentary organic matter is derived from marine phytoplankton mainly. Based on a two-end member mixing model, the estimated terrestrial organic matter is up to 41.3% at site S0612 and 11% at site D06 respectively. The δ~(15)N values of sediments range from 5.92‰ to 6.29‰ with an average of(6.08±0.12)‰ for D06, and 3.96‰ to 4.85‰ with an average of(4.32±0.26)‰ for S0612 respectively. The low δ~(15)N values may reflect that nitrogen fixation was more important for the new nitrogen supply and the source of ntritate from north Pacific intermediate water, and was not affected by nitrate utilization.
引文
[1] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
    [2] Tesi T, Miserocchi S, Goňi M A, et al. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy)[J]. Estuarine Coastal and Shelf Science, 2007, 73(3/4): 431-446.
    [3] Hu Jianfang, Zhang Gan, Li Kechang, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: evidence from high-resolution sedimentary records[J]. Marine Chemistry, 2008, 110(1/2): 7-17.
    [4] Hu Jianfang, Sun Xuesong, Peng Ping’an, et al. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records[J]. Quaternary International, 2009, 206(1/2): 46-51.
    [5] Jia Guodong, Xu Shendong, Chen Weifang, et al. 100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, China[J]. Marine Chemistry, 2013, 151: 47-55.
    [6] Anderson R F, Winckler G. Problems with paleoproductivity proxies[J]. Paleoceanography, 2005, 20(3): PA3012, doi: 10.1029/2004PA001107.
    [7] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181.
    [8] Paytan A, Kastner M, Chavez F P. Glacial to Interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite[J]. Science, 1996, 274(5291): 1355-1357.
    [9] Nürnberg C C, Bohrmann G, Schülter M. Barium accumulation in the Atlantic sector of the Southern Ocean: results from 190 000-year records[J]. Paleoceanography, 1997, 12(4): 594-603.
    [10] McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy[J]. Geochimica Cosmochimica Acta, 1998, 62(21/22): 3453-3473.
    [11] McManus J, Berelson W M, Hammond D E, et al. Barium cycling in the North Pacific: implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy[J]. Paleoceanography, 1999, 14(1): 53-61.
    [12] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [13] Wang Pinxian, Li Qianyu. The South Chia Sea: Paleoceanography and Sedimentology[M]. Berlin: Springer, 2009: 512.
    [14] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426.
    [15] Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean[J]. Paleoceanography, 1988, 3(1): 39-59.
    [16] 叶曦雯. 胶州湾中生物硅的研究[D]. 青岛: 中国海洋大学, 2002. Ye Xiwen. Biogenic Silica in the Jiaozhou Bay[D]. Qingdao: Ocean Univer6sity of China, 2002.
    [17] Schenau S J, De Lange G J. A novel chemical method to quantify fish debris in marine sediments[J]. Limnology and Oceanography, 2000, 45(4): 963-971.
    [18] Rutten A, De Lange G J. A novel selective extraction of barite, and its application to eastern Mediterranean sediments[J]. Earth and Planetary Science Letters, 2002, 198(1/2): 11-24.
    [19] 赵军. 沉积物中生物钡的分布特征及其与热带亚热带北太平洋海区表层生产力之间关系[D]. 杭州: 国家海洋局第二海洋研究所, 2010: 50. Zhao Jun. The distribution of biogenic barium in the sediments and its correlation with the primary production in the tropical-subtropical northern Pacific Ocean[D]. Hangzhou: Second Institute of Oceanography, State Oceanic Administration, 2010: 50.
    [20] 江巧文. 热带亚热带北太平洋深海沉积物中氮碳同位素组成及其与上层海洋硝酸盐利用率的关系[D]. 杭州: 国家海洋局第二海洋研究所, 2009. Jiang Qiaowen. The nitrogen and carbon isotopes composition of sediments in the tropical-subtropical northern Pacific Ocean and their correlation with nitrate utiliuzation in the surface[D]. Hangzhou: Second Institute of Oceanography, State Oceanic Administration, 2009.
    [21] Ning X, Chai F, Xue H, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10): C100005.
    [22] Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study[J]. Deep Sea Research I: Oceanographic Research Papers, 2002, 49(8): 1387-1412.
    [23] 杨群慧, 林振宏, 张富元, 等. 南海东部重矿物分布特征及其影响因素[J]. 青岛海洋大学学报, 2002, 32(6): 956-964. Yang Qunhui, Lin Zhenhong, Zhang Fuyuan, et al. The distribution characteristics of heavy minerals in the east of South China Sea and their controlling factors[J]. Journal of Ocean University of Qingdao, 2002, 32(6): 956-964.
    [24] 杨群慧, 张富元, 林振宏, 等. 南海东北部晚更新世以来沉积环境演变的矿物—地球化学记录[J]. 海洋学报, 2004, 26(2): 72-80. Yang Qunhui, Zhang Fuyuan, Lin Zhenhong, et al. On mineralogical and geochemical records of paleosedimentary environmental variation in the northeastern South China Sea since the late Pleistocene[J]. Haiyang Xuebao, 2004, 26(2): 72-80.
    [25] 刘志飞, Alain T, Clemens S C, 等. 南海北坡ODP1146站第四纪粘土矿物记录: 洋流搬运与东亚季风演化[J]. 中国科学:D辑, 2003, 33(3): 271-280. Liu Zhifei, Alain T, Clemens S C, et al. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146): implications for oceanic current transport and East Asian monsoon evolution[J]. Science in China Series D: Earth Science, 2003, 46(12): 1223-1235.
    [26] 邵磊, 乔培军, 庞雄, 等. 南海北部近代沉积物钕同位素分布及意义[J]. 科学通报, 2009, 54(1): 98-103. Shao Lei, Qiao Peijun, Pang Xiong, et al. Nd isotopic variations and its implications in the recent sediments from the northern South China Sea[J]. Chinese Science Bulletin, 2009, 54(2): 311-317.
    [27] Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303.
    [28] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 144(3/4): 289-302.
    [29] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250.
    [30] Hu Jianfang, Peng Ping’an, Jia Guodong, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98(2/4): 274-285.
    [31] Jia Guodong, Peng Ping’an. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82(1/2): 47-54.
    [32] Labeyrie L D, Duplessy J C. Changes in the oceanic 13C/12C ratio during the last 140 000 years: high-latitude surface water record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 50(1): 217-240.
    [33] Kienast M. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: global implications[J]. Paleoceanography, 2000, 15(2): 244-253.
    [34] Holmes M E, Müller P J, Schneider R R, et al. Spatial variations in euphotic zone nitrate utilization based on δ15N in surface sediments[J]. Geo-Marine Letters, 1998, 18(1): 58-65.
    [35] Holmes M E, Schneider R R, Müller P J, et al. Reconstruction of past nutrient utilization in the eastern Angola Basin based on sedimentary 15N/14N ratios[J]. Paleoceanography, 1997, 12(4): 604-614.
    [36] Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Palaeogeography, 2012, 27(4): PA4203, doi: 10.1029/2012PA002321.
    [37] Kao S J, Yang J Y T, Liu K K, et al. Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2033.
    [38] Montoya J P, McCarthy J J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture[J]. Journal of Plankton Research, 1995, 17(3): 439-464.
    [39] Liu K K, Su M J, Hsueh C-R, et al. The nitrogen isotopic composition of nitrate in the Kuroshio Water northeast of Taiwan: evidence for nitrogen fixation as a source of isotopically light nitrate[J]. Marine Chemistry, 1996, 54(3/4): 273-292.
    [40] Sutka R L, Ostrom N E, Ostrom P H, et al. Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North pacific subtropical gyre to the eastern tropical north pacific[J]. Geochimica Cosmochimica Acta, 2004, 68(3): 517-527.
    [41] 朱根海, 宁修仁, 蔡昱明, 等. 南海浮游植物种类组成和丰度分布的研究[J]. 海洋学报, 2003, 25(S2): 8-22. Zhu Genhai, Ning Xiuren, Cai Yuming, et al. Studies on species composition and abundance distribution of phytoplankton in the South China Sea[J]. Haiyang Xuebao, 2003, 25(S2): 8-22.
    [42] Altabet M, Murray D W, Prell W L. Climatically linked oscillations in Arabian Sea denitrification over the past 1 m. y.: implications for the marine N cycle[J]. Paleoceanography, 1999, 14(6): 732-743.
    [43] Francois R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surfacewater stratification of low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654): 929-935.
    [44] Sch?nfeld J, Kudrass H R. Hemipelagic sediment accumulation rates in the South China Sea related to Late Quaternary sea-level changes[J]. Quaternary Research, 1993, 40(3): 368-379.
    [45] 郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报, 2007, 29(3): 58-68. Hao Qiang, Ning Xiuren, Liu Chenggang, et al. Satellite and in situ observations of primary production in the northern South China Sea[J]. Haiyang Xuebao, 2007, 29(3): 58-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700