用户名: 密码: 验证码:
北方土石山区典型坡面优先流特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Preferential Flow on Typical Slope in Northern Rocky Mountain Area
  • 作者:赵思远 ; 苏辉东 ; 贾仰文 ; 龚家国 ; 牛存稳 ; 甘永德 ; 赵翠平
  • 英文作者:ZHAO Siyuan;SU Huidong;JIA Yangwen;GONG Jiaguo;NIU Cunwen;GAN Yongde;ZHAO Cuiping;The State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins,China Institute of Water Resources and Hydropower Research (IWHR);Department of Hydraulic Engineering,Tsinghua University;
  • 关键词:土石山区 ; 染色示踪 ; 优先流 ; 坡面 ; 染色形态特征
  • 英文关键词:rocky mountain area;;dye tracer;;preferential flow;;slope;;stained morphology characteristics
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:中国水利水电科学研究院流域水循环模拟与调控国家重点实验室;清华大学水利水电工程系;
  • 出版日期:2018-12-15
  • 出版单位:水土保持学报
  • 年:2018
  • 期:v.32;No.159
  • 基金:国家重点基础研究发展计划项目(2015CB452701);; 国家自然科学基金项目(51379215,51779272);; 流域水循环模拟与调控国家重点实验室自主研究课题项目(2016ZY03)
  • 语种:中文;
  • 页:TRQS201806002
  • 页数:7
  • CN:06
  • ISSN:61-1362/TV
  • 分类号:11-17
摘要
以太行山区崇陵流域的典型坡面为研究对象,通过亮蓝(Blue-FCF)与KI染色示踪试验,利用图像处理软件技术,计算优先流形态特征参数,分析5个不同坡位的优先流形态特征变化规律。结果表明:(1)随着坡位升高,坡面土壤厚度、容重逐渐减小,而总孔隙度、渗透系数、饱和含水量逐渐增大,凋萎系数与田间持水量则呈现波动变化趋势;(2)随着坡位的升高,染色剂运移深度不断增加,基质流区域占比减小而优先流区域占比增大;各坡位染色面积比随深度缓慢下降,在40cm以下深度范围高坡位点的土壤水分与周围土体交互作用较低坡位点较弱;染色剂入渗体积随坡位升高而逐渐增大;(3)随着坡位的升高,优先流对实际水分运移的贡献增大,高坡位坡面水分以优先流为主要方式向下入渗;(4)土壤质地与容重是影响土石山区坡面不同坡位优先流差异的主要因素。
        Taking the typical slope of the Chongling Basin in the Taihang Mountain area as the research object,the dye tracer experiments with Blue-FCF and KI were performed.The image processing software was used to explore the changes of preferential flow morphological characteristics at the five different slope positions.The results showed that:(1)With the increase of altitude,the soil thickness and bulk density of each slope position gradually decreased,and the total porosity,permeability coefficient and saturated moisture content gradually increased,while the wilting coefficient and field water holding capacity tended to fluctuate.(2)With the rise of slope position,the depth of dye migration increased,the matrix area decreased and the preferential flow area gradually increased;the stained area rate of dye infiltrate decreased with the increase of the depth.The interaction between soil moisture and surrounding soil in the depth below40 cm was weaker than that in the lower slope;the volume of dye infiltration increased gradually as the rise of slope position;(3)As the slope position increased,the contribution of the preferential flow to the actual water transport increased and the water flow infiltrated with preferential flow as the main method on higher slope;(4)Soil texture and bulk density were the driving forces for the difference of preferential flow at different slope positions in earth-rock mountainous area.
引文
[1] imunek J,Jarvis N J,van Genuchten M T et al.Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone[J].Journal of Hydrology,2003,272(1):14-35.
    [2] Beven K,Germann P.Macropores and water flow in soils[J].Water Resources Research,1982,18(5):1311-1325.
    [3] Allaire S E,Roulier S,Cessna A J.Quantifying preferential flow in soils:A review of different techniques[J].Journal of Hydrology,2009,378(1/2):179-204.
    [4]牛健植,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报,2006,26(1):231-243.
    [5] Bouma J,Belmans C F M,Dekker L W.Water infiltration and redistribution in a silt loam subsoil with vertical worm channels1[J].Soil Science Society of America Journal,1982,46(5):917-921.
    [6]盛丰,张利勇,吴丹.土壤优先流模型理论与观测技术的研究进展[J].农业工程学报,2016,32(6):1-10.
    [7]Weiler M,Flühler H.Inferring flow types from dye patterns in macroporous soils[J].Geoderma,2004,120(1/2):137-153.
    [8]Hagedorn F,Bundt M.The age of preferential flow paths[J].Geoderma,2002,108(1):119-132.
    [9] Gerke H H.Preferential flow descriptions for structured soils[J].Journal of Plant Nutrition and Soil Science,2010,169(3):382-400.
    [10] Ritsema C J,Dekker L,Hendrickx J M H,et al.Preferential flow mechanism in a water repellent sandy soil[J].Water Resources Research,1993,29(7):2183-2194.
    [11] Jarvis N,Koestela J,Larsboa M.Understanding preferential flow in the vadose zone:Recent advances and future prospects[J].Vadose Zone Journal,2016,15(12):1-11.
    [12]芮孝芳.水文学前沿科学问题之我见[J].水利水电科技进展,2015,35(5):95-102.
    [13]盛丰,王康,张仁铎,等.土壤非均匀水流运动与溶质运移的两区—两阶段模型[J].水利学报,2015,46(4):433-442.
    [14]王红兰,蒋舜媛,崔俊芳,等.紫色土坡耕地土壤大孔隙流的定量评价[J].农业工程学报,2017,33(22):167-174.
    [15]严家平,陈孝杨,程方奎,等.矿区土壤裂隙优先流对土壤铵态氮迁移及土壤结构的影响[J].农业工程学报,2018,34(2):120-126.
    [16] Sander T,Gerke H.Preferential flow patterns in paddy fields using a dye tracer[J].Vadose Zone Journal,2007,6(1):105-115.
    [17]hrstr9m P,Persson M,Albergel J,et al.Field-scale variation of preferential flow as indicated from dye coverage[J].Journal of Hydrology,2002,257(1):164-173.
    [18] Mei X,Zhu Q,Ma L,et al.Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope[J].Land Degradation and Development,2018,29(5):1353-1365.
    [19]李胜龙,易军,刘目兴,等.稻田—田埂过渡区土壤优先流特征研究[J].土壤学报,2018,55(5):1131-1142.
    [20]姚晶晶,程金花,张洪江,等.入渗水量对重庆四面山草地优先流影响的定量评价[J].水土保持学报,2018,32(2):45-51.
    [21]曹建生,刘昌明,张万军,等.太行山区坡地水文地质特性与渗流集蓄技术研究[J].水科学进展,2005,16(2):216-221.
    [22]骆紫藤,牛健植,孟晨,等.华北土石山区森林土壤中石砾分布特征对土壤大孔隙及导水性质的影响[J].水土保持学报,2016,30(3):305-308.
    [23]杜晓晴,牛健植,侯琨,等.华北土石山区优先流区与基质流区土壤特性分析[J].中国水土保持科学,2015,13(3):51-57.
    [24]张英虎,牛健植,朱蔚利,等.森林生态系统林木根系对优先流的影响[J].生态学报,2015,35(6):1788-1797.
    [25]魏虎伟,程金花,张洪江,等.四面山2种林地大孔隙特征与优先流关系研究[J].水土保持学报,2014,25(4):263-268.
    [26]张英虎,牛健植,杜晓晴,等.鹫峰国家森林公园土壤优先流现象分析[J].水土保持学报,2013,27(1):41-45.
    [27]刘目兴,杜文正.山地土壤优先流路径的染色示踪研究[J].土壤学报,2013,50(5):871-880.
    [28]盛丰,方妍.土壤水非均匀流动的碘-淀粉染色示踪研究[J].土壤,2012,44(1):144-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700