用户名: 密码: 验证码:
基于质量守恒边界条件的下游泵送螺旋槽液膜密封空化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of cavitation of downstream pumping spiral groove liquid film seal considering mass conserving boundary condition
  • 作者:杨文静 ; 郝木明 ; 曹恒超 ; 袁俊马 ; 李晗
  • 英文作者:YANG Wenjing;HAO Muming;CAO Hengchao;YUAN Junma;LI Han;College of Chemical Engineering, China University of Petroleum(East China);
  • 关键词:螺旋槽液膜密封 ; 空化 ; 结构参数 ; 空化临界转速 ; 空化临界压力 ; 有限元法
  • 英文关键词:spiral groove liquid film seal;;cavitation;;geometrical parameters;;critical speed of cavitation;;critical pressure of cavitation;;finite element method
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(华东)化学工程学院;
  • 出版日期:2018-06-05 15:54
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(51375497);; 东营市重点研发项目(2016YF01)~~
  • 语种:中文;
  • 页:HGSZ201809020
  • 页数:13
  • CN:09
  • ISSN:11-1946/TQ
  • 分类号:2+176-187
摘要
液膜中空化的产生会影响密封润滑性能。基于质量守恒的JFO空化边界条件,建立螺旋槽液膜密封数学模型,采用流线迎风有限元法求解Reynolds控制方程,获得端面空化分布,并通过可视化试验进行了验证。以空化临界转速和临界压力为表征,分析了螺旋槽结构参数对空化特性的影响。结果表明:螺旋槽内空化区域呈机翼截面型,且随着转速的增加而变大,随着内径压力的增加而减小,空化周向最大长度位于近槽根处;空化临界转速随着槽数、槽深的增加而增加,随着螺旋角、槽长坝长比、槽台宽比的增加而减小;空化临界压力随各结构参数的变化趋势与空化临界转速相反。通过对各结构参数的合理选择,可实现对空化的有效控制。
        Cavitation occurrence in the liquid film affects the lubrication performance of mechanical seals. A mathematical model of spiral groove liquid film seal was established based on the mass-conserving JFO cavitation boundary condition. The Reynolds governing equation was solved by the streamline upwind finite element method, and cavitation distribution was obtained. The calculation result was verified by cavitation visualization experiment. The influence of spiral groove geometrical parameters on cavitation characteristics were analyzed with the critical speed and critical pressure of cavitation as the characterization. The results indicate that the cavitation area in spiral groove is of wing section type, and it increases with increasing rotating speed and decreases with increasing inner pressure. The maximum circumferential length of cavitation is located near the groove radius. The critical speed of cavitation increases with the increase of groove number and depth, but decreases with the increase of spiral angle, radial seal dam extent and groove width ratio. The changing trends of critical pressure of cavitation with geometrical parameters are opposite to those of critical speed of cavitations. The effective control of cavitation can be achieved by reasonable selection of geometrical parameters.
引文
[1]顾伯勤,蒋小文,孙见君,等.机械密封技术最新进展[J].化工进展,2003,22(11):1160-1164.GU B Q,JIANG X W,SUN J J,et al.Recent progress on mechanical seal technology[J].Chemical Industry and Engineering Progress,2003,22(11):1160-1164.
    [2]刘伟,刘莹,王玉明,等.周向波度机械密封的流固耦合[J].清华大学学报(自然科学版),2011,51(5):577-581.LIU W,LIU Y,WANG Y M,et al.Fluid-solid coupling of a hydrodynamic mechanical seal with a wavy face[J].Journal of Tsinghua University(Science and Technology),2011,51(5):577-581.
    [3]郝木明,庄媛,章大海,等.考虑空化效应的螺旋槽液膜密封特性数值研究[J].中国石油大学学报(自然科学版),2015,39(3):132-137.HAO M M,ZHUANG Y,ZHANG D H,et al.Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation[J].Journal of China University of Petroleum(Natural Science Edition),2015,39(3):132-137.
    [4]陈汇龙,吴强波,左木子,等.机械密封端面液膜空化的研究进展[J].排灌机械工程学报,2015,33(2):138-144.CHEN H L,WU Q B,ZUO M Z,et al.Overview on liquid film cavitation in mechanical seal faces[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(2):138-144.
    [5]JAKOBSSON B,FLOBERG L.The finite journal bearing,considering vaporization[J].Wear,1958,2(2):85-88.
    [6]OLSSON K O.Cavitation in dynamically loaded bearings[J].Wear,1967,55(2):295-304.
    [7]ELROD H G.A cavitation algorithm[J].Journal of Tribology,1981,103(3):350-354.
    [8]BREWE D E.Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings[J].Journal of Tribology,1986,108(4):628-638.
    [9]VIJAYARAGHAVAN D,JR KEITH T G.Development and evaluation of a cavitation algorithm[J].Tribology Transactions,1989,32(2):225-233.
    [10]KUMAR A,BOOKER J F.A finite element cavitation algorithm[J].Journal of Tribology,1991,113(2):276-284.
    [11]QIU Y,KHONSARI M M.On the prediction of cavitation in dimples using a mass-conservative algorithm[J].Journal of Tribology,2009,131(4):41702-41711.
    [12]QIU Y,KHONSARI M M.Experimental investigation of tribological performance of laser textured stainless steel rings[J].Tribology International,2011,44(5):635-644.
    [13]胡纪滨,刘丁华,魏超.径向直线槽端面密封空化特性数值模拟[J].摩擦学学报,2011,31(6):551-556.HU J B,LIU D H,WEI C.Numerical simulation for cavitation of radial grooved face seals[J].Tribology,2011,31(6):551-556.
    [14]刘丁华,胡纪滨.空化模型对径向直线槽端面密封性能分析的影响[J].北京理工大学学报,2012,32(11):1101-1104.LIU D H,HU J B.Effect of cavitation model on the performance of radial grooved face seals[J].Transactions of Beijing Institute of Technology,2012,32(11):1101-1104.
    [15]唐飞翔,孟祥凯,李纪云,等.基于质量守恒的Laser Face液体润滑机械密封数值分析[J].化工学报,2013,64(10):3694-3700.TANG F X,MENG X K,LI J Y,et al.Numerical analysis of Laser Face liquid lubricated mechanical seal based on mass conservation[J].CIESC Journal,2013,64(10):3694-3700.
    [16]MENG X K,BAI S X,PENG X D.Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals[J].Tribology International,2014,77(6):132-141.
    [17]赵一民,苑士华,胡纪滨,等.基于质量守恒边界条件的螺旋槽旋转密封性能分析[J].机械工程学报,2014,50(22):142-149.ZHAO Y M,YUAN S H,HU J B,et al.Performance analysis of spiralgroove rotary seals considering mass conserving boundary condition[J].Journal of Mechanical Engineering,2014,50(22):142-149.
    [18]赵一民,魏超,苑士华.两种空化边界条件下的旋转密封润滑状态分析与试验[J].兵工学报,2014,35(12):1937-1943.ZHAO Y M,WEI C,YUAN S H.Analysis and experiment of lubrication condition of rotary seal based on two cavitation boundary conditions[J].Acta Armamentarii,2014,35(12):1937-1943.
    [19]ZHAO Y M,WEI C,YUAN S H,et al.Theoretical and experimental study of cavitation effects on the dynamic characteristic of spiralgroove rotary seals[J].Tribology Letters,2016,64(3):50.
    [20]李振涛,郝木明,杨文静,等.波度和锥度对液体润滑机械密封空化特性影响[J].化工学报,2016,67(5):2005-2014.LI Z T,HAO M M,YANG W J,et al.Effects of waviness and taper on cavitation characteristics of liquid lubricated mechanical seals[J].CIESC Journal,2016,67(5):2005-2014.
    [21]李振涛,郝木明,杨文静,等.螺旋槽液膜密封端面空化发生机理[J].化工学报,2016,67(11):4750-4761.LI Z T,HAO M M,YANG W J,et al.Cavitation occurrence mechanism of spiral groove liquid film seals[J].CIESC Journal,2016,67(11):4750-4761.
    [22]杨文静,郝木明,李振涛,等.考虑锥度及波度的螺旋槽液膜密封动态特性分析[J].化工学报,2016,67(12):5199-5207.YANG W J,HAO M M,LI Z T,et al.Analysis of dynamic characteristics of spiral groove liquid film seal considering taper and waviness[J].CIESC Journal,2016,67(12):5199-5207.
    [23]PINKUS O,LUND J W.Centrifugal effects in thrust bearings and seals under laminar conditions[J].Journal of Lubrication Technology,1981,103(1):126-136.
    [24]YU T H,SADEGHI F.Groove effects on thrust washer lubrication[J].Journal of Tribology,2001,123(2):295-304.
    [25]ZHAO Y M,HU J B,WEI C.Dynamic analysis of spiral-groove rotary seal ring for wet clutches[J].Journal of Tribology,2014,136(3):031710.
    [26]李振涛,王赟磊,郝木明,等.下游泵送螺旋槽密封空化试验及性能分析[J].摩擦学学报,2017,37(6):743-755.LI Z T,WANG Y L,HAO M M,et al.Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J].Tribology,2017,37(6):743-755.
    [27]BROOKS A N,HUGHES T J R.Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,1982,32(1/2/3):199-259.
    [28]唐飞翔.Laser Face液体润滑端面密封数值模拟与型槽结构优化设计[D].杭州:浙江工业大学,2013.TANG F X.Numerical simulation and groove optimization design for a Laser Face liquid lubricated end face seal[D].Hangzhou:Zhejiang University of Technology,2013.
    [29]SHI F,PARANJPE R.An implicit finite element cavitation algorithm[J].Computer Modeling in Engineering&Sciences,2002,3(4):507-515.
    [30]郝木明.机械密封技术及应用[M].北京:中国石化出版社,2010:21.HAO M M.Mechanical Seal Technology and Application[M].Beijing:China Petrochemical Press,2010:21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700