用户名: 密码: 验证码:
周向斜面台阶螺旋槽液膜密封流体动压性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrodynamic performance of liquid film seals in circumferential beveled-step spiral grooves
  • 作者:李振涛 ; 黄佰朋 ; 郝木明 ; 孙鑫晖 ; 王赟磊 ; 杨文静
  • 英文作者:LI Zhentao;HUANG Baipeng;HAO Muming;SUN Xinhui;WANG Yunlei;YANG Wenjing;Institute of Sealing Technology, China University of Petroleum;CNPC Dushanzi Petrochemical Company;
  • 关键词:螺旋槽液膜密封 ; 周向斜面台阶 ; 流体动压性能 ; 液膜压力 ; 空化面积比
  • 英文关键词:spiral groove liquid film seals;;circumferential beveled-step;;hydrodynamic performance;;liquid film pressure;;cavitation area ratio
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(华东)密封技术研究所;中国石油独山子石化公司;
  • 出版日期:2017-02-08 09:10
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:国家自然科学基金项目(51375497);; 山东省自主创新及成果转化专项项目(2014ZZCX10102-4)~~
  • 语种:中文;
  • 页:HGSZ201705033
  • 页数:11
  • CN:05
  • ISSN:11-1946/TQ
  • 分类号:284-294
摘要
为降低密封面间液体流动发散区液膜压力损失及提高密封性能,在矩形截面螺旋槽中引入周向斜面台阶结构并建立物理模型。基于JFO空化边界,探讨了不同槽深时,斜面转角比对液膜压力、降低空穴发生及流体动压性能的影响。结果表明:当斜面转角比小于1/30时,下游泵送或上游泵送液膜密封的周向膜压或螺旋线方向膜压均得到迅速提升而空化面积比迅速降低,尤其是上游泵送密封;随斜面转角比增大,空化面积比先增大后减小,空穴区中液膜开始破裂位置前缘压力呈增加趋势,而液膜重生成位置后缘压力反之。槽深的增加有助于提升液膜压力和降低空化面积比,当槽深为8~12μm,在斜面转角比为0.1~0.3时,两类型液膜密封承载能力均可达到最大值,前者最大增幅约13.5%,后者约28%;摩擦扭矩最大增幅约4.6%,增幅较小;泄漏量随斜面转角比的变化规律与承载能力相似。
        To reduce liquid film pressure loss in liquid flow divergent zone between sealing surfaces and to improve sealing performance, structure of circumferential beveled-step was introduced into rectangular section spiral groove and corresponding physical model was established. Based on the JFO cavitation model, effects of bevel angle ratio on liquid film pressure distribution, cavitation occurrence, and liquid film hydrodynamic performance were studied at different groove depths. When bevel angle ratio was below 1/30, liquid film pressures of downstream and upstream pumping liquid film seals along circumferential and spiral line direction were enhanced rapidly but cavitation area ratio was dropped sharply, which was more significant for upstream pumping seals. With the increase of bevel angle ratio, leading edge pressure at liquid film rupture showed an increasing trend and trailing edge pressure at liquid film reformation showed opposite trend, but cavitation area ratio increased first and decreased later. The increase of groove depth contributed to the increase of liquid film pressure and the decrease of cavitation area ratio. When groove depth ranged from 8 to 12 μm and bevel angle ratio ranged from 0.1 to 0.3, the load-carrying capacities of both liquid film seals reached to peak values with about 13.5% maximum amplification for the former and about 28% for the latter, whereas increase of friction torque was smaller with about 4.6% maximum amplification. The leakage change along with the increase of bevel angle ratio was similar to the load-carrying capacity.
引文
[1]STORM T N,LUDWIG L P,ALLEN G P,et al.Spiral groove face seal concepts;comparison to conventional face seals in sealing liquid sodium(400 to 1000 Deg F)[J].Journal of Lubrication Technology,1968,90(2):450-463.DOI:10.1115/1.3601580.
    [2]BUCK G S,VODEN D.Upstream pumping:a new concept in mechanical sealing technology[J].Lubrication Engineering,1990,46(4):213-217.
    [3]SALANT R F,HOMILLER S J.Stiffness and leakage in spiral groove upstream pumping mechanical seals[J].Tribology Transactions,1993,36(1):55-60.DOI:10.1080/10402009308983132.
    [4]WANG Y M,WANG J L,YANG H X,et al.Theoretical analyses and design guidelines of oil-film lubricated mechanical face seals with spiral grooves[J].Tribology Transactions,2004,47(4):537-542.DOI:10.1080/05698190490500743.
    [5]郝木明,李振涛,任宝杰,等.机械密封技术及应用[M].2版.北京:中国石化出版社,2014:76-78.HAO M M,LI Z T,REN B J,et al.Mechanical Seal Technology and Application[M].2nd ed.Beijing:China Petrochemical Press,2014:76-78.
    [6]郝木明,胡丹梅,郭洁.新型上游泵送机械密封的性能研究[J].化工机械,2001,28(1):12-15.HAO M M.HU D M,GUO J.Performance study of the new upstream pumping mechanical seal[J].Chemical Machinery,2001,28(1):12-15.
    [7]BURTON R A.An experimental study of turbulent flow in a spiral-groove configuration[J].Journal of Lubrication Technology,1968,90(2):443-449.DOI:10.1115/1.3601579.
    [8]GAD A M,NEMAT-ALLA M M,KHALIL A A,et al.On the optimum groove geometry for herringbone grooved journal bearings[J].Journal of Tribology,2006,128(3):585-593.DOI:10.1115/1.2197524.
    [9]王涛,黄伟峰,王玉明.机械密封液膜汽化问题研究现状及进展[J].化工学报,2012,63(11):3375-3382.WANG T,HUANG W F,WANG Y M.Research and progress of mechanical seals operating with vaporization transition[J].CIESC Journal,2012,63(11):3375-3382.
    [10]陈汇龙,吴强波,左木子,等.机械密封端面液膜空化的研究进展[J].排灌机械工程学报,2015,33(2):138-144.DOI:10.3969/j.issn.1674-8530.14.0085.CHEN H L,WU Q B,ZUO M Z,et al.Overview on liquid film cavitation in mechanical seal faces[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(2):138-144.DOI:10.3969/j.issn.1674-8530.14.0085.
    [11]郝木明,庄媛,章大海,等.考虑空化效应的螺旋槽液膜密封特性数值研究[J].中国石油大学学报(自然科学版),2015,39(3):132-137.DOI:10.3969/j.issn.1673-5005.2015.03.018.HAO M M,ZHUANG Y,ZHANG D H,et al.Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation[J].Journal of China University of Petroleum,2015,39(3):132-137.DOI:10.3969/j.issn.1673-5005.2015.03.018.
    [12]QIU Y,KHONSARI M M.Experimental investigation of tribological performance of laser textured stainless steel rings[J].Tribology International,2011,44(5):635-644.DOI:org/10.1016/j.triboint.2011.01.003.
    [13]XIE Y,LI Y J,SUO S F,et al.A mass-conservative average flow model based on finite element method for complex textured surfaces[J].Sic.China-Phys.Mech.Astron.,2013,56(10):1909-1919.DOI:10.1007/s11433-013-5217-z.
    [14]MENG X K,BAI S X,PENG X D.An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J].Journal of Zhejiang University-SCIENCE(Applied Physics&Engineering),2014,15(3):172-184.DOI:10.1631/jzus.A1300328.
    [15]张俊岩,王晓力.基于质量守恒边界条件的应力偶流体润滑动载轴承特性[J].机械工程学报,2010,46(15):102-106.DOI:10.3901/JME.2010.15.102.ZHANG J Y,WANG X L.Performance of dynamically loaded journal bearing with couple stress fluids considering mass-conserving boundary condition[J].Journal of Mechanical Engineering,2010,46(15):102-106.DOI:10.3901/JME.2010.15.102.
    [16]YU T H,SADEGHI F.Groove effects on thrust washer lubrication[J].Journal of Tribology,2001,123(2):295-304.
    [17]刘丁华,胡纪滨.空化模型对径向直线槽端面密封性能分析的影响[J].北京理工大学学报,2012,32(11):1101-1104.DOI:10.15918/j.tbit1001-0645.2012.11.019.LIU D H,HU J B.Effect of cavitation model on the performance of radial grooved face seals[J].Transactions of Beijing Institute of Technology,2012,32(11):1101-1104.DOI:10.15918/j.tbit1001-0645.2012.11.019.
    [18]李京浩.机械密封空化效应的数值计算方法与试验研究[D].北京:清华大学,2011.LI J H.Numerical computational method and experimental study for cavitation in mechanical seals[D].Beijing:Tsinghua University,2011.
    [19]ZHAO Y M,HU J B,WEI C.Dynamic analysis of spiral-groove rotary seal ring for wet clutches[J].Journal of Tribology,2014,136(3):031710-1-10.DOI:10.1115/1.4027548.
    [20]赵一民,胡纪滨,吴维,等.螺旋槽旋转密封环润滑状态转变预测[J].机械工程学报,2013,49(9):75-80.DOI:10.3901/JME.2013.09.075.ZHAO Y M,HU J B,WU W,et al.Prediction of lubrication condition transition for spiral groove rotary seal rings[J].Journal of Mechanical Engineering,2013,49(9):75-80.DOI:10.3901/JME.2013.09.075.
    [21]李振涛,郝木明,杨文静,等.波度和锥度对液体润滑机械密封空化特性影响[J].化工学报,2016,67(5):2005-2014.LI Z T,HAO M M,YANG W J,et al.Effects of waviness and taper on cavitation characteristic of liquid lubricated mechanical seals[J].CIESC Journal,2016,67(5):2005-2014.
    [22]李振涛,郝木明,杨文静,等.螺旋槽液膜密封端面空化发生机理[J].化工学报,2016,67(11):4750-4761.LI Z T,HAO M M,YANG W J,et al.Cavitation mechanism of spiral groove liquid film seals[J].CIESC Journal,2016,67(11):4750-4761.
    [23]NEMAT-ALLA M M,GAD A M,KHALIL A A,et al.Static and dynamic characteristics of oil lubricated beveled-step herringbone-grooved journal bearings[J].Journal of Tribology,2009,131(1):011701-011707.DOI:10.1115/1.2908903.
    [24]ABDELAAI O A,KHALIL A A,NASR A M.Characteristics of oil-lubricated partially herringbone grooved journal bearing[J].Journal of Engineering Sciences,Assiut University,2009,37(4):925-942.
    [25]JAMES D D,POTTER A F.Numerical analysis of the gas-lubricated spiral-groove thrust bearing-compressor[J].Journal of Lubrication Technology,1967,89(4):439-443.DOI:10.1115/1.3617023.
    [26]KAWABATA N.A study on the numerical analysis of fluid film lubrication by the boundary-fitted coordinates system[J].Transactions of Japan Society of Mechanical Engineers,Series C,1987,53(494):2155-2160.
    [27]CHRISTOPHE M,NOEI B,TOURNERIE B.A deterministic mixed lubrication model for mechanical seals[J].Journal of Tribology,2011,133(4):042203.DOI:10.1115/1.4005068.
    [28]JAKOBSSON B,FLOBERG L.The finite journal bearing,considering vaporization[J].Wear,1958,2(2):85-88.
    [29]OLSSON K O.Cavitation in dynamically loaded bearings[J].Wear,1967,55(2):295-304.
    [30]ELROD H G.A cavitation algorithm[J].Journal of Lubrication Technology,1981,103(3):350-354.DOI:10.1115/1.3251669.
    [31]PAYVAR P,SALANT R F.A computational method for cavitation in a wavy mechanical seal[J].Journal of Tribology,1992,114(1):199-204.DOI:10.1115/1.2920861.
    [32]SHYY W,TONG S S,CORREA S M.Numerical recirculating flow calculation using a body-fitted coordinate system[J].Numerical Heat Transfer,1985,8:99-113.DOI:10.1080/01495728508961844.
    [33]PATANKAR S V.Numerical Heat Transfer and Fluid Flow[M].London:Taylor&Francis,1980:72-73.
    [34]FESANGHARY M,KHONSARI M M.A modification of the switch function in the Elrod cavitation algorithm[J].Journal of Tribology,2011,133(2):024501.DOI:10.1115/1.4003484.
    [35]许胜丽,樊文欣.多重网格法求解雷诺方程[J].机械工程与自动化,2013,(2):70-71.XU S L,FAN W X.Multi-grid method for solving Reynolds equation[J].Mechanical Engineering&Automation,2013,(2):70-71.
    [36]LEBECK A O.Principles and Design of Mechanical Face Seals[M].New York:John Wiley&Sons Inc.,1991:152-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700