用户名: 密码: 验证码:
不同铁肥及其施用方法对水稻籽粒镉吸收的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different iron fertilizers and application times on cadmium absorption in rice
  • 作者:上官宇先 ; 陈琨 ; 喻华 ; 秦鱼生 ; 曾祥忠 ; 周子军 ; 郭松 ; 张兰
  • 英文作者:SHANGGUAN Yu-xian;CHEN Kun;YU Hua;QIN Yu-sheng;ZENG Xiang-zhong;ZHOU Zi-jun;GUO Song;ZHANG Lan;Soil and Fertilizer Institute,Sichuan Academy of Agricultural Sciences;Monitoring & Experimental Station of Plant Nutrition and Agro-Environment for Sloping Land in South Region,Ministry of Agriculture;Chengdu Soil and Fertilizer Testing Center,Sichuan Provincial Department of Agricultural and Rural Affairs;
  • 关键词:叶面喷施 ; 铁肥 ; 水稻镉 ; ; 阻控
  • 英文关键词:foliar spraying;;iron fertilizer;;rice cadmium;;competition;;control
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:四川省农业科学院土壤肥料研究所;农业部南方坡耕地植物营养与农业环境科学观测实验站;四川省农业农村厅成都土壤肥料测试中心;
  • 出版日期:2019-07-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.287
  • 基金:四川省财政创新能力提升工程(2016GYSH-024,2017QNJJ-014,2017LWJJ-008);; 四川省科技计划项目(2018JY0097,2017SZ0188)~~
  • 语种:中文;
  • 页:NHBH201907003
  • 页数:10
  • CN:07
  • ISSN:12-1347/S
  • 分类号:18-27
摘要
针对四川省稻田生态系统中镉(Cd)污染突出的问题,以轻度Cd超标稻田治理为目标,开展阻控稻米积累Cd的施肥技术研究。通过大田试验采用裂区设计,研究不同铁肥种类及施用方法对水稻籽粒Cd吸收的影响。结果表明,不同铁肥处理均增加了四个不同类型水稻品种的产量,其中硫酸亚铁追肥喷施显著增加了Y两优的产量(6.67%,P<0.05),EDDHA-Fe底肥土施及追肥喷施显著增加了德粳1号的产量(13.33%~14.32%,P<0.05)。不同铁肥施用方式中,EDDHA-Fe喷施处理对四个水稻品种的稻米Cd含量降低幅度最大(20.87%,P>0.05)。不同时期喷施铁肥结果来看,以孕穗期、扬花期和灌浆期各喷施一次EDDHA-Fe处理的稻米Cd含量最低。四个水稻品种的秸秆Fe含量与稻米Cd含量呈直线性负相关。扬花期喷施铁肥稻米中Fe含量增加最多,稻米/秸秆Fe含量比值远高于稻米/秸秆Cd含量比值,这表明水稻中Fe由植株向稻米转移的速率远高于Cd。水稻稻米Fe含量与稻米Cd含量呈二元函数关系(P<0.05),在较低含量时,水稻籽粒中Cd的含量随着Fe含量的上升而上升,当到达一定程度时,水稻籽粒中Cd的含量随着Fe含量的上升而下降。研究表明,水稻籽粒中的Cd受秸秆中Cd和铁肥施用方式和类型的影响,通过合理施用铁肥可以降低镉轻度污染土壤中稻米Cd含量。
        In researching Cd pollution control in rice fields of Sichuan Province, we used Fe fertilizers during the rice growing period. The results showed that the yields of four rice varieties were increased by ferrous sulfate and ethylenediamine-N,N′-bis(2-hydroxy-phenyl)acetic acid-Fe(EDDHA-Fe)application. Application of Fe fertilizer increased rice yield by 6.67% in Y Liangyou(P<0.05), while EDDHA-Fe increased rice yield by 13.33%~14.32% in Dejing 1(P<0.05). Among the different Fe fertilizer applications, foliar EDDHA-Fe application showed the most significant Cd reduction. The application of Fe fertilizer had significant influence on rice Cd content. EDDHAFe spraying treatment significantly reduced Cd content, with the average rice Cd content decreasing by 20.87%(P>0.05). Iron content was negatively correlated with Cd content in the four rice varieties tested. The Fe content increased most in the flowering stage, and the ratio of rice/straw Fe content was far higher than the ratio of rice/straw Cd content, which showed that the Fe transfer rate from plant to rice was much higher than that of Cd. The Fe and Cd rice content showed a quadratic function relationship(P<0.05). At lower concentration levels,the content of Cd in rice grains increased with the Fe content, and then decreased as the increased Fe content reached a certain level. In summary, it has been found that the Cd level in rice grains was affected by the amount of shoot Cd, and by the method and type of Fe fertilizer application, and that, in soil that was slightly Cd polluted, the Cd content of rice could be reduced by controlled use of Fe fertilizer.
引文
[1]Ghoochani M,Rastkari N,Yunesian M,et al.What do we know about exposure of Iranians to cadmium?Findings from a systematic review[J].Environmental Science&Pollution Research,2018,25(4):1-11.
    [2]Li B,Xiao R,Wang C,et al.Spatial distribution of soil cadmium and its influencing factors in peri-urban farmland:A case study in the Jingyang District,Sichuan,China[J].Environmental Monitoring&Assessment,2017,189(1):1-16.
    [3]Rapisarda V,Miozzi E,Loreto C,et al.Cadmium exposure and prostate cancer:Insights,mechanisms and perspectives[J].Frontiers in Bioscience,2018,23(9):1687-1700.
    [4]Hu Y,Cheng H,Tao S.The challenges and solutions for cadmium-contaminated rice in China:A critical review[J].Environment International,2016,92-93:515.
    [5]Xie C,Hu L,Yang Y,et al.Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius[J].Microbiological Research,2017,196:1-6.
    [6]Chemek M,Mimouna S B,Boughammoura S,et al.Protective role of zinc against the toxicity induced by exposure to cadmium during gestation and lactation on testis development[J].Reproductive Toxicology,2016,63:151-160.
    [7]Ninkov M,Aleksandrov A P,Mirkov I,et al.Strain differences in toxicity of oral cadmium intake in rats[J].Food&Chemical Toxicology,2016,96:11-23.
    [8]Shao X,Cheng H,Li Q,et al.Anthropogenic atmospheric emissions of cadmium in China[J].Atmospheric Environment,2013,79(11):155-160.
    [9]环境保护部、国土资源部.全国土壤污染状况调查公报[R].北京:中华人民共和国环境保护部、国土资源部,2014.Ministry of Environmental Protection,Ministry of Land and Resources.Bulletin of the national survey of soil pollution[R].Beijing:Ministry of Environmental Protection,Ministry of Land and Resources,2014.
    [10]四川省环境保护厅、四川省国土资源厅.四川省土壤污染状况调查公报[R].成都:四川省环境保护厅、四川省国土资源厅.2014.Department of Environmental Protection of Sichuan Province,Department of Land and Resources of Sichuan Province.Investigation bulletin of soil pollution in Sichuan Province[R].Chengdu:Department of Environmental Protection of Sichuan Province,Department of Land and Resources of Sichuan Province,2014.
    [11]李义纯,李永涛,李林峰,等.水稻土中铁-氮循环耦合体系影响镉活性机理研究[J].环境科学学报,2018,38(1):328-335.LI Yi-chun,LI Yong-tao,LI Lin-feng,et al.Mechanisms of the ironnitrogen coupled cycles controlling variations of cadmium activity in paddy soil[J].Acta Scientiae Circumstantiae,2018,38(1):328-335.
    [12]李姣,刘璐,杨斌,等.镉及镉与铁、锌互作对水稻生长的影387响[J].华北农学报,2018,33(1):217-223.LI Jiao,LIU Lu,YANG Bin,et al.Effects of cadmium concentration and interaction of cadmium with iron and zinc interaction on rice growth[J].Acta Agriculturae Boreali-Sinica,2018,33(1):217-223.
    [13]陈爱葵,王茂意,刘晓海,等.水稻对重金属镉的吸收及耐性机理研究进展[J].生态科学,2013,32(4):514-522.CHEN Ai-kui,WANG Mao-yi,LIU Xiao-hai,et al.Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms[J].Ecological Science,2013,32(4):514-522.
    [14]Nakanishi H,Ogawa I,Ishimaru Y,et al.Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice[J].Soil Science&Plant Nutrition,2010,52(4):464-469.
    [15]Pence N S,Larsen P B,Ebbs S D,et al.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J].Proc Natl Acad Sci USA,2000,97(9):4956-4960.
    [16]Vert G,Briat J F,Curie C.Arabidopsis IRT2 gene encodes a root-periphery iron transporter[J].Plant Journal,2010,26(2):181-189.
    [17]Uraguchi S,Fujiwara T.Cadmium transport and tolerance in rice:Perspectives for reducing grain cadmium accumulation[J].Rice,2012,5(1):5.
    [18]Safarzadeh S,Ronaghi A,Karimian N.Effect of cadmium toxicity on micronutrient concentration,uptake and partitioning in seven rice cultivars[J].Archives of Agronomy&Soil Science,2013,59(2):231-245.
    [19]Sasaki A,Yamaji N,Yokosho K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].Plant Cell,2012,24(5):2155-2167.
    [20]Ishimaru Y,Takahashi R,Bashir K,et al.Characterizing the role of rice Nramp5 in manganese,iron and cadmium transport[J].Sci Rep,2012,2(6071):286-293.
    [21]刘侯俊,李雪平,韩晓日,等.铁镉互作对水稻脂质过氧化及抗氧化酶活性的影响[J].应用生态学报,2013,24(8):2179-2185.LIU Hou-jun,LI Xue-ping,HAN Xiao-ri,et al.Effects of Fe-Cd interaction on the lipid peroxidation and antioxidative enzyme activities of rice[J].Chinese Journal of Applied Ecology,2013,24(8):2179-2185.
    [22]Sharma S S,Kaul S,Metwally A,et al.Cadmium toxicity to barley(Hordeum vulgare)as affected by varying Fe nutritional status[J].Plant Science,2004,166(5):1287-1295.
    [23]万亚男,张燕,余垚,等.铁营养状况对黄瓜幼苗吸收转运镉和锌的影响[J].农业环境科学学报,2015,34(3):409-414.WAN Ya-nan,ZHANG-yan,YU Gui,et al.Effects of iron supply on cadmium and zinc uptake and translocation by cucumber seedlings[J].Journal of Agro-Environment Science,2015,34(3):409-414.
    [24]卢美献.不同固定剂及其配比对土壤中镉砷钝化修复效果研究[D].南宁:广西大学,2016.LU Mei-xian.Study on immobilization and remediation of cadmium and arsenic combined pollution soil by different soil amendments and their mix[D].Nanning:Guangxi University,2016.
    [25]黄崇玲.不同铁氧化物对土壤镉有效性及水稻累积镉的影响[D].南宁:广西大学,2013.20197HUANG Chong-ling.Effects of different iron oxides on the bioavailability of soil cadmium and cadmium accumulation in rice[D].Nanning:Guangxi University,2013.
    [26]邵国胜,陈铭学,王丹英,等.稻米镉积累的铁肥调控[J].中国科学(C辑:生命科学),2008(2):180-187.SHAO Guo-sheng,CHEN Ming-xue,WANG Dan-ying,et al.Regulation of iron fertilizer on cadmium accumulation in rice[J].Chinese Science Series C:Life Science,2008(2):180-187.
    [27]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.BAO Shi-dan.Soil and agricultural chemistry analysis[M].Beijing:China Agriculture Press,2000.
    [28]陈虎.淹水条件下土壤中铁和砷的形态转化与砷释放机制[D].合肥:安徽农业大学,2016.CHEN Hu.Speciation transformation and arsenic release mechanism of iron and arsenic in flooded soils[D].Hefei:Anhui Agriculture University,2016.
    [29]毛凌晨,叶华.氧化还原电位对土壤中重金属环境行为的影响研究进展[J].环境科学研究,2018,31(10):1669-1676.MAO Ling-chen,YE Hua.Influence of redox potential on heavy metal behavior in soils:A review[J].Research of Environmental Sciences,2018,31(10):1669-1676.
    [30]甄博,郭相平,陆红飞,等.旱涝交替胁迫对拔节期水稻生长和土壤氧化还原电位的影响[J].灌溉排水学报,2018,37(10):42-47.ZHEN Bo,GUO Xiang-ping,LU Hong-fei,et al.Response of rice growth and soil redox potential to alternate drought and water logging stresses at the jointing stage[J].Journal of Irrigation and Drainage,2018,37(10):42-47.
    [31]饶玉春,郑婷婷,马伯军,等.微量元素铁、锰、铜对水稻生长的影响及缺素防治[J].中国稻米,2012,18(4):31-35.RAO Yu-chun,ZHENG Ting-ting,MA Bo-jun,et al.Effects of trace elements iron,manganese and copper on rice growth and nutrient deficiency control[J].Chinese Rice,2012,18(4):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700