用户名: 密码: 验证码:
分频输电应用于深远海风电并网的技术经济性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technical and Economic Analysis on Fractional Frequency Transmission System for Integration of Long-distance Offshore Wind Farm
  • 作者:黄明煌 ; 王秀 ; 刘沈全 ; 王锡凡 ; 孟永庆 ; 叶荣
  • 英文作者:HUANG Minghuang;WANG Xiuli;LIU Shenquan;WANG Xifan;MENG Yongqing;YE Rong;School of Electrical Engineering, Xi'an Jiaotong University;State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University;School of Electric Power, South China university of Technology;Economic Research Institute of State Grid Fujian Electric Power Company;
  • 关键词:深远海风电并网 ; 高压交流 ; 高压直流 ; 分频输电系统 ; 技术经济分析
  • 英文关键词:long-distance deep offshore wind power;;high voltage alternating current(HVAC);;high voltage direct current(HVDC);;fractional frequency transmission system(FFTS);;technical and economic analysis
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:西安交通大学电气工程学院;电力设备电气绝缘国家重点实验室西安交通大学;华南理工大学电力学院;国网福建省电力公司经济技术研究院;
  • 出版日期:2019-03-10
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.651
  • 基金:国家电网公司总部科技项目“大型深远海风电场高效送出与运行控制关键技术研究”;; 国家自然科学基金资助项目(51677142)~~
  • 语种:中文;
  • 页:DLXT201905023
  • 页数:8
  • CN:05
  • ISSN:32-1180/TP
  • 分类号:484-491
摘要
全球海上风电发展呈现大规模化、集群化及深远海化的特点。离岸距离大于100 km的大规模深远海风电的输电与并网方式成为海上风电发展和研究的热点方向。通过分析电缆等电气设备的传输极限和损耗,采用等年值法,综合考虑设备投资成本、维护成本、损耗费用及电缆选型,建立了系统的比较各种并网方式的技术经济评价方法。以某400 MW海上风电场为例,对高压交流输电技术、高压直流输电技术和分频输电系统3种并网方式进行技术经济分析。论证说明分频输电技术通过降低频率,既可提高电缆载流量,又显著降低了交流电缆中的充电电流,因此传输距离显著增加,表明分频输电技术在远距离、大规模深远海风电并网方面具有技术经济优势。
        Global offshore wind farm is developing towards large-scale, clustered and long-distance deep offshore. The transmission and grid connection of large-scale offshore wind farm with a distance greater than 100 kilometers has become a major focus of offshore wind energy development. A technical and economic evaluation method for systematically evaluating various grid-connected methods is established by analyzing transmission limit and loss of cable and other electrical equipment,using the uniform annual value method and considering equipment investment cost, maintenance cost, loss cost and cable selection. Taking a 400 MW offshore wind farm as an example, the technical and economic comparison of high voltage alternating current(HVAC), high voltage direct current(HVDC) and fractional frequency transmission system(FFTS) is carried out. The demonstration shows that FFTS by reducing the frequency can not only realize the growth of the ampacity of cable, but also significantly reduce the charging current in the AC cable. Therefore, the transmission distance of FFTS increases remarkably, which indicates that FFTS has both technical and economic advantages on large-scale and long-distance offshore wind farm transmission and connection system.
引文
[1] Global Wind Energy Council. GWEC global wind statistics 2017 [EB/OL]. [2018-12-06]. http://gwec.net/wp-content/uploads/2018/04/offshore.pdf.
    [2] 夏云峰.2017年欧洲海上风电新增并网容量3 148 MW[J].风能,2018,2(2):38-43.XIA Yunfeng. European offshore wind power added 3 148 MW grid-connected capacity in 2017[J]. Wind Energy, 2018, 2(2): 38-43.
    [3] Wind Europe. Offshore wind in Europe key trends and statistics 2017[EB/OL].[2018-07-18]. https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2017.pdf.
    [4] 姜楠.深海风力发电技术的发展现状与前景分析[J].新能源进展,2015,3(1):21-24.JIANG Nan. Analysis on status and prospect of wind power generation in deep sea[J]. Advances in New and Renewable Energy, 2015, 3(1): 21-24.
    [5] 王秀丽,张小亮,宁联辉,等.分频输电在海上风电并网应用中的前景和挑战[J].电力工程技术,2017,36(1):15-19.WANG Xiuli, ZHANG Xiaoliang, NING Lianhui, et al. Application prospects and challenges of fractional frequency transmission system in offshore wind power integration[J]. Electric Power Engineering Technology, 2017, 36(1): 15-19.
    [6] 迟永宁,梁伟,张占奎,等.大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771.CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid intergration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
    [7] 王锡凡,卫晓辉,宁联辉,等.海上风电并网与输送方案比较[J].中国电机工程学报,2014,34(31):5459-5466.WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466.
    [8] BRESESTI P, KLING W L, HENDRIKS R L, et al. HVDC connection of offshore wind farms to the transmission system[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 37-43.
    [9] 徐进,韦古强,金逸,等.江苏如东海上风电场并网方式及经济性分析[J].高电压技术,2017,43(1):74-81.XU Jin, WEI Guqiang, JIN Yi, et al. Economic analysis on integration topology of Rudong offshore wind farm in Jiangsu province[J]. High Voltage Engineering, 2017, 43(1): 74-81.
    [10] LAURIA S, SCHEMBARI M, PALONE F A. Very long distance connection of gigawatt-size offshore wind farms: extra high-voltage AC versus high-voltage DC cost comparison[J]. IET Renewable Power Generation, 2016, 10(5): 713-720.
    [11] 王锡凡,刘沈全,宋卓彦,等.分频海上风电系统的技术经济分析[J].电力系统自动化,2015,39(3):43-50.WANG Xifan, LIU Shenquan, SONG Zhuoyan, et al. Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system[J]. Automation of Electric Power Systems, 2015, 39(3): 43-50.
    [12] CHEN Hao, JOHNSON M H, ALIPRANTIS D C. Low-frequency AC transmission for offshore wind power[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2236-2244.
    [13] RUDDY J, MEERE R, O’LOUGHLIN C, et al. Design of VSC connected low frequency AC offshore transmission with long HVAC cables[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 960-970.
    [14] LIU Shenquan, WANG Xifan, MENG Yongqing, et al. A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121.
    [15] NGO T, LWIN M, SANTOSO S. Steady-state analysis and performance of low frequency AC transmission lines[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3873-3880.
    [16] LI Jing, ZHANG Xiaoping. Small signal stability of fractional frequency transmission system with offshore wind farms[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1538-1546.
    [17] WANG Xifan, WEI Xiaohui, MENG Yongqing. Experiment on grid-connection process of wind turbines in fractional frequency wind power system[J]. IEEE Transactions on Energy Conversion, 2015, 30(1): 22-31.
    [18] 迟方德,王锡凡,王秀丽.风电经分频输电装置接入[J].电力系统自动化,2008,32(4):59-63.CHI Fangde, WANG Xifan, WANG Xiuli. A new wind power grid connection method based on fractional frequency transmission system[J]. Automation of Electric Power Systems, 2008, 32(4): 59-63.
    [19] WYLLIE P, TANG Y, RAN L, et al. Low frequency AC transmission-elements of a design for wind farm connection[C]// 11th IET International Conference on AC and DC Power Transmission, February 10-12, 2015, Birmingham, UK: 1-5.
    [20] BERGLUND R. Frequency dependence of transformer losses[D]. Goterborg: Chalmers University of Technology, 2009.
    [21] DAWSON L, KNIGHT A M. Transmission line length, operating condition and rating regime[C]// 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), May 15-18, 2016, Vancouver, Canada: 1-6.
    [22] International Electrotechnical Commission. Eletric cables-calculation of the current rating-part 1: current rating equations (100% load factor) and calculation of losses-section 1: IEC 60287-1-1 [S/OL]. [2018-06-01]. https://webstore.iec.ch/publication/1264.
    [23] SHAZLY J H, MOSTAFA M A, IBRAHIM D K, et al. Thermal analysis of high-voltage cables with several types of insulation for different configurations in the presence of harmonics[J]. IET Generation, Transmission & Distribution, 2017, 11(14): 3439-3448.
    [24] 夏道止.电力系统分析[M].北京:中国电力出版社,2011.XIA Daozhi. Power system analysis[M]. Beijing: China Electric Power Press, 2011.
    [25] LIU Shenquan, WANG Xifan, NING Lianhui, et al. Integrating offshore wind power via fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1253-1261.
    [26] XIANG X, MERLIN M, GREEN T. Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection[C]// 12th IET International Conference on AC and DC Power Transmission, May 28-29, 2016, Beijing, China: 1-6.
    [27] GONZALEZ R A G. Review of offshore wind farm cost components[J]. Energy for Sustainable Development, 2017, 37(2): 10-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700