用户名: 密码: 验证码:
2016年10~11月期间北京市大气颗粒物污染特征与传输规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pollution Characteristics and Regional Transport of Atmospheric Particulate Matter in Beijing from October to November,2016
  • 作者: ; 程水源 ; 姚森 ; 王晓琦 ; 张俊峰
  • 英文作者:ZHANG Han-yu;CHENG Shui-yuan;YAO Sen;WANG Xiao-qi;ZHANG Jun-feng;Key Laboratory of Beijing on Regional Air Pollution Control,College of Environmental and Energy Engineering,Beijing University of Technology;
  • 关键词:气溶胶化学组分在线监测仪(ACSM) ; 非难熔性PM_1(NR-PM_1) ; 化学组分 ; 潜在源贡献分析(PSCF)法 ; 气象-空气质量模式(WRF-CAMx) ; PM_(2. ; 5)传输通量
  • 英文关键词:Aerosol Chemical Speciation Monitor (ACSM);;non-refractory submicron aerosols (NR-PM_1);;chemical components;;potential source contribution function (PSCF) method;;meteorology-air quality coupling model system (WRF-CAMx);;PM_(2.5) transport flux
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京工业大学环境与能源工程学院区域大气复合污染防治北京市重点实验室;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2018YFC0213206);; 国家自然科学基金项目(91544232,51638001);; 北京市科技计划项目(Z181100005418017)
  • 语种:中文;
  • 页:HJKZ201905001
  • 页数:11
  • CN:05
  • ISSN:11-1895/X
  • 分类号:3-13
摘要
本研究采用气溶胶化学组分在线监测仪(ACSM)对北京地区2016年10月15日~11月15日期间非难熔性PM_1(NR-PM_1)化学组分进行实时连续在线观测,探讨了NR-PM_1化学组分的演变特征;运用潜在源贡献分析(PSCF)法和气象-空气质量模式(WRFCAMx)识别了北京PM_(2. 5)潜在污染源区和传输路径,揭示了PM_(2. 5)净传输通量的垂直分布特征.结果表明,北京秋季NR-PM_1和PM_(2. 5)质量浓度分别为(59. 16±57. 05)μg·m~(-3)和(89. 82±66. 66)μg·m~(-3),其中NR-PM_1平均占PM_(2. 5)的(70. 31±22. 28)%.整个观测期间,有机物(Org)、硝酸盐(NO_3~-)、硫酸盐(SO_4~(2-))、铵盐(NH_4~+)和氯化物(Chl)分别占NR-PM_1总质量浓度的(42. 75±11. 35)%、(21. 27±7. 72)%、(19. 11±7. 08)%、(12. 19±2. 64)%和(4. 68±3. 24)%,不同化学组分的日变化特征存在明显差异.对北京秋季NR-PM_1污染影响较大的潜在源区主要集中在河北南部、河南东北部及山东西部,重污染期间保定、北京南部及廊坊等城市对NR-PM_1贡献较大. WRF-CAMx模拟结果表明,PM_(2. 5)总的净传输通量呈现出显著的垂直分布特征.整个观测期间,毗邻城市主要向北京输入PM_(2. 5),净通量最大出现在海拔600~1 000 m;而重污染前期外来源输送PM_(2. 5)主要位于高空,直到污染最严重的11月5日,PM_(2. 5)转为近地面传输,说明高空和近地面传输是影响北京秋季PM_(2. 5)重污染形成的重要因素.同时鉴别出了两种传输路径,即西南-东北方向(保定→北京→承德)和西北-东南方向(张家口→北京→廊坊北→天津).
        In this study, the Aerosol Chemical Speciation Monitor( ACSM) was used to conduct real-time and continuous comprehensive observation of chemical components in non-refractory submicron aerosols( NR-PM_1) from October 15 to November 15,2016. In addition to that,the evolution characteristics of NR-PM_1 chemical components were discussed. The potential source contribution function( PSCF) method and a meteorology-air quality coupling model system( WRF-CAMx) were applied to identify the potential PM_(2. 5) emission sources and transport path in Beijing,and the vertical distribution characteristics of PM_(2. 5) net transport flux.The results indicate that the monthly average mass concentrations of NR-PM_1 and PM_(2. 5) were( 59. 16 ± 57. 05) μg·m~(-3) and( 89. 82 ±66. 66) μg·m~(-3),respectively. On average,NR-PM_1 accounted for( 70. 31 ± 22. 28) % of PM_(2. 5). During the whole study period,Org,NO_3~-,SO_4~(2-),NH_4~+,and Chl represented( 42. 75 ± 11. 35) %,( 21. 27 ± 7. 72) %,( 19. 11 ± 7. 08) %,( 12. 19 ± 2. 64) %,and( 4. 68 ± 3. 24) % of NR-PM_1,respectively. The diurnal variation characteristics of different chemical components were disparate.The high potential source areas were mainly located in southern Hebei,northeastern Henan,and western Shandong provinces during the whole study period. During the haze episode,the potential regions of higher contribution were concentrated in Baoding,southern Beijing,and Langfang. The simulation results of WRF-CAMx showed that the vertical distribution characteristics of PM_(2. 5) net flux varied with different altitudes. The adjacent cities mainly export PM_(2. 5) to Beijing,and the PM_(2. 5) net fluxes mainly occurred at 600-800 m during the whole study period. PM_(2. 5) in Beijing from external sources mainly occurred in high altitudes during the early stage of the heavy pollution episode. Then it turned to near-ground transport until November 5,when the pollution was the most severe. This indicated that high-altitude and near-ground transport both played an essential role in the formation of heavy PM_(2. 5) pollution in Beijing during the autumn. Moreover,two important transport pathways were identified: the southwest-northeast pathway( Baoding→Beijing→Chengde) and the northwest-southeast pathway( Zhangjiakou→Beijing→Langfang-south→Tianjin).
引文
[1]Lang J L,Zhou Y,Chen D S,et al.Investigating the contribution of shipping emissions to atmospheric PM2.5using a combined source apportionment approach[J].Environmental Pollution,2017,229:557-566.
    [2]Zheng G J,Duan F K,Su H,et al.Exploring the severe winter haze in Beijing:the impact of synoptic weather,regional transport and heterogeneous reactions[J].Atmospheric Chemistry and Physics,2015,15(6):2969-2983.
    [3]Qi M,Zhu X,Du W,et al.Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5in Haidian,Beijing[J].Environmental Pollution,2016,220:704-712.
    [4]Song S K,Shon Z H,Park Y H.Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity[J].Science of the Total Environment,2017,599-600:400-412.
    [5]薛文博,付飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J].中国环境科学,2014,34(6):1361-1368.Xue W B,Fu F,Wang J N,et al.Numerical study on the characteristics of regional transport of PM2.5in China[J].China Environmental Science,2014,34(6):1361-1368.
    [6]Sun Y L,Wang Z F,Du W,et al.Long-term real-time measurements of aerosol particle composition in Beijing,China:seasonal variations,meteorological effects,and source analysis[J].Atmospheric Chemistry and Physics,2015,15(17):10149-10165.
    [7]韩力慧,向欣,张海亮,等.北京市开发区PM1污染特征及影响霾形成的因素[J].中国环境科学,2018,38(8):2846-2856.Han L H,Xiang X,Zhang H L,et al.Pollution characteristics of PM1and factors affecting the formation of haze pollution at a developed zone in Beijing[J].China Environmental Science,2018,38(8):2846-2856.
    [8]李璇,聂滕,齐珺,等.2013年1月北京市PM2.5区域来源解析[J].环境科学,2015,36(4):1148-1153.Li X,Nie T,Qi J,et al.Regional source apportionment of PM2.5in Beijing in January 2013[J].Environmental Science,2015,36(4):1148-1153.
    [9]何心河,马建中,徐敬,等.2014年10月京津冀地区一次PM2.5污染过程的数值模拟[J].气象,2016,42(7):827-837.He X H,Ma J Z,Xu J,et al.Simulation of a heavy PM2.5pollutant event over Beijing-Tianjin-Hebei region in October 2014[J].Meteorological Monthly,2016,42(7):827-837.
    [10]张宇,郎建垒,温维,等.唐山PM2.5污染特征及区域传输的贡献[J].北京工业大学学报,2017,43(8):1252-1262.Zhang H Y,Lang J L,Wen W,et al.Pollution characteristics and regional transmission of PM2.5in Tangshan[J].Journal of Beijing University of Technology,2017,43(8):1252-1262.
    [11]花丛,刘超,张恒德,等.京津冀地区冬半年污染传输特征及传输指数的改进[J].气象,2017,43(7):813-822.Hua C,Liu C,Zhang H D,et al.Characteristics of air pollutant transport over Beijing-Tianjin-Hebei region during winter months and improvement of transport weather index[J].Meteorological Monthly,2017,43(7):813-822.
    [12]Ng N L,Herndon S C,Trimborn A,et al.An aerosol chemical speciation monitor(ACSM)for routine monitoring of the composition and mass concentrations of ambient aerosol[J].Aerosol Science and Technology,2011,45(7):780-794.
    [13]Zhang Y J,Tang L L,Yu H X,et al.Chemical composition,sources and evolution processes of aerosol at an urban site in Yangtze River Delta,China during wintertime[J].Atmospheric Environment,2015,123:339-349.
    [14]Li H Y,Zhang Q,Zhang Q,et al.Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain:significant contribution from coal and biomass combustion[J].Atmospheric Chemistry and Physics,2017,17(7):4751-4768.
    [15]Sun Y L,Wang Z F,Dong H B,et al.Characterization of summer organic and inorganic aerosols in Beijing,China with an Aerosol Chemical Speciation Monitor[J].Atmospheric Environment,2012,51(5):250-259.
    [16]王郭臣,王珏,信玉洁,等.天津PM10和NO2输送路径及潜在源区研究[J].中国环境科学,2014,34(12):3009-3016.Wang G C,Wang Y,Xin Y J,et al.Transportation pathways and potential source areas of PM10and NO2in Tianjin[J].China Environmental Science,2014,34(12):3009-3016.
    [17]Li D P,Liu J G,Zhang J S,et al.Identification of long-range transport pathways and potential sources of PM2.5and PM10in Beijing from 2014 to 2015[J].Journal of Environmental Sciences,2017,56:214-229.
    [18]Zhou Y,Xing X F,Lang J L,et al.A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China[J].Atmospheric Chemistry and Physics,2017,17(4):2839-2864.
    [19]Chen D S,Zhao N,Lang J L,et al.Contribution of ship emissions to the concentration of PM2.5:a comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region,China[J].Science of the Total Environment,2018,610-611:1476-1486.
    [20]Chang X,Wang S X,Zhao B,et al.Assessment of inter-city transport of particulate matter in the Beijing-Tianjin-Hebei region[J].Atmospheric Chemistry and Physics,2018,18(7):4843-4858.
    [21]Hu W,Hu M,Hu W W,et al.Seasonal variations in high timeresolved chemical compositions,sources,and evolution of atmospheric submicron aerosols in the megacity Beijing[J].Atmospheric Chemistry and Physics,2017,17(16):9979-10000.
    [22]Zhang Y J,Tang L L,Wang Z,et al.Insights into characteristics,sources,and evolution of submicron aerosols during harvest seasons in the Yangtze River Delta region,China[J].Atmospheric Chemistry and Physics,2015,15(3):1331-1349.
    [23]Gong Z H,Lan Z J,Xue L,et al.Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China[J].Frontiers of Environmental Science&Engineering,2012,6(5):725-733.
    [24]Hu W W,Hu M,Hu W,et al.Chemical composition,sources,and aging process of submicron aerosols in Beijing:Contrast between summer and winter[J].Journal of Geophysical Research:Atmospheres,2016,121(4):1955-1977.
    [25]杨孝文,周颖,程水源,等.北京冬季一次重污染过程的污染特征及成因分析[J].中国环境科学,2016,36(3):679-686.Yang X W,Zhou Y,Cheng S Y,et al.Characteristics and formation mechanism of a heavy winter air pollution event in Beijing[J].China Environmental Science,2016,36(3):679-686.
    [26]江琪,王飞,孙业乐.河北香河亚微米气溶胶组分特性、来源及其演变规律分析[J].环境科学,2018,39(7):3022-3032.Jiang Q,Wang F,Sun Y L.Analysis of chemical composition,source and evolution of submicron particles in Xianghe,Hebei province[J].Environmental Science,2018,39(7):3022-3032.
    [27]Yang X W,Cheng S Y,Li J B,et al.Characterization of chemical composition in PM2.5in Beijing before,during,and after a large-scale international event[J].Aerosol and Air Quality Research,2017,17(4):896-907.
    [28]Xu P,Zhang J K,Ji D S,et al.Characterization of submicron particles during autumn in Beijing,China[J].Journal of Environmental Sciences,2018,63:16-27.
    [29]Lang J L,Cheng S Y,Wen W,et al.Development and application of a new PM2.5source apportionment approach[J].Aerosol and Air Quality Research,2017,17(1):340-350.
    [30]王燕丽,薛文博,雷宇,等.京津冀区域PM2.5污染相互输送特征[J].环境科学,2017,38(12):4897-4904.Wang Y L,Xue W B,Lei Y,et al.Regional transport matrix study of PM2.5in Jingjinji region,2015[J].Environmental Science,2017,38(12):4897-4904.
    [31]Ji D S,Li L,Wang Y S,et al.The heaviest particulate airpollution episodes occurred in northern China in January,2013:insights gained from observation[J].Atmospheric Environment,2014,92:546-556.
    [32]Gao M,Carmichael G R,Wang Y,et al.Modeling study of the2010 regional haze event in the North China Plain[J].Atmospheric Chemistry and Physics,2016,16(3):1673-1691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700