用户名: 密码: 验证码:
面向精准喷雾的果树冠层体积在线计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Online Calculation Method of Fruit Trees Canopy Volume for Precision Spray
  • 作者:姜红花 ; 刘理民 ; 柳平增 ; 王金宇 ; 张晓辉 ; 高东升
  • 英文作者:JIANG Honghua;LIU Limin;LIU Pingzeng;WANG Jinyu;ZHANG Xiaohui;GAO Dongsheng;College of Information Science and Engineering,Shandong Agricultural University;College of Mechanical and Electrical Engineering,Shandong Agricultural University;College of Horticulture Science and Engineering,Shandong Agricultural University;
  • 关键词:精确喷雾 ; 果树 ; 冠层体积 ; 点云图 ; 空隙预判 ; 在线计算
  • 英文关键词:precision spraying;;fruit trees;;canopy volume;;point cloud;;void prejudgement;;online calculation
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:山东农业大学信息科学与工程学院;山东农业大学机械与电子工程学院;山东农业大学园艺科学与工程学院;
  • 出版日期:2019-05-13 15:32
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:山东省重点研发计划项目(2015GNC112004);; 山东省农业重大应用技术提升项目;; 山东省自然科学基金项目(ZR2018MC017);; 山东省林业科技创新团队项目(LYCX04-2018-22);; 山东省重大科技创新工程项目(2018CXGC0209)
  • 语种:中文;
  • 页:NYJX201907012
  • 页数:10
  • CN:07
  • ISSN:11-1964/S
  • 分类号:127-136
摘要
针对目前变量喷雾未综合考虑空隙预判及防漏喷的问题,提出了基于空隙预判的果树冠层体积在线计算方法。该方法利用超声波传感器与激光传感器提前46 cm探测,获取冠层信息点云图,并剔除空隙及冗余数据进行滤波;同时进行曲线分割、空隙预判,沿喷雾机行进方向离散分割冠层,并制定针对空隙的防漏喷决策。试验表明:采用融合式传感器阵列及防漏喷策略,防漏喷效果最佳,但存在喷施过量的问题。相比普通融合式传感器阵列,改进后的融合式传感器阵列,在连续型密集果园上、中、下冠层的雾滴沉积个数分别降低6. 95%、3. 85%和升高4. 40%,沉积量分别降低11. 11%、8. 33%、3. 57%;在纺锤型稀疏果园上、中、下冠层的雾滴沉积个数分别降低27. 08%、30. 37%、18. 55%,沉积量分别降低64. 71%、60. 87%、40. 38%;在单株型稀疏果园上、中、下冠层的雾滴沉积个数分别降低18. 44%、26. 26%、15. 54%,沉积量分别降低40%、42. 43%、41. 46%。
        In order to solve the problem of synthetic void pre-judgment and anti-leakage spray,a new canopy partied volume method of fruit tree was developed based on void pre-judgment. The measurement sensors required were NU40F15TR-2M non-contact ultrasonic ranging sensor and SICK-DT35 non-contact laser ranging sensor,which were fixed on caterpillar self-propelled orchard sprayer. When information of fruits was collected,the vehicle's traveling speed was 1. 0 m/s,and the sensor was 1. 4 m away from the tree trunk. Firstly,NU40F15TR-2M non-contact ultrasonic ranging sensor and SICK-DT35 non-contact laser ranging sensor were used to obtain orchard information point cloud pictures,ahead of nozzle 46 cm distance,which were distances between ranging sensor and fruits canopy. Continuous canopy width was calculated based on point cloud picture,and canopy width calculation formula was designed. At the same time,fruits void was reasoned by the formulas,and the abnormal data point was chosen with a negative canopy width value and replaced with data points of zero. Secondly,length of discrete canopy volume model was determined by E6B2-CWZ10C speed,because speed of caterpillar self-propelled orchard sprayer was nonuniform motion in actual travelling. Thus caterpillar self-propelled orchard sprayer travelling distance of a certain period time was calculated by uniform speed of caterpillar self-propelled orchard sprayer and variable rate spraying decision time. And variable spraying decision time was designed by a required time formula,which was satisfied with responsing time,effective spray time of the actuator and the real-time requirement of variable spray. Pulse number of E6B2-CWZ10C speed encoder was calculated based on the principle of itself and caterpillar self-propelled orchard sprayer driving distance of a certain period time.Thus discrete canopy length was obtained by E6B2-CWZ10C speed encoder and variable rate spraying decision time. Finally,fruits void and fruits canopy were judged by a model,which was used to distinguish fruits void,fruits canopy and the mixture of fruits void and fruits canopy. There were fruits void,when the average width was less than one tenth of the maximum width in the distance of discrete canopy length. Therefore,the discrete canopy width value was got and fruit tree canopy volume model was partied. This anti-leakage spray decision was made by designing logic operation. The testing results showed that the fusing sensor array and the blowout prevention strategy were the best. But there was the problem of overspray. By improving the fusion sensor array and testing,compared with the conventional fusion sensor array,the number of droplets in the upper,middle and lower canopy of the continuous dense orchard was decreased by 6. 95%,3. 85%,and increased by 4. 40%,respectively; the deposition amount was decreased by 11. 11%,8. 33% and 3. 57%,respectively. The number of droplets in the upper,middle and lower canopy of the spindle-type sparse orchard was decreased by 27. 08%,30. 37%and 18. 55%,respectively; the sedimentation was decreased by 64. 71%,60. 87% and 40. 38%,respectively. The number of droplets in the upper,middle and lower canopy of the single plant type sparse orchard was decreased by 18. 44%,26. 26% and 15. 54% respectively; the sedimentation was decreased by 40%,42. 43% and 41. 46%,respectively.
引文
[1]白鹏.基于Android的果园自动对靶风送式喷雾试验台的研制[D].泰安:山东农业大学,2016.BAI Peng. Development of automatic target detecting and air-assisted spraying test platform based on Android[D]. Taian:Shandong Agricultural University,2016.(in Chinese)
    [2]周良富,薛新宇,周立新,等.果园变量喷雾技术研究现状与前景分析[J].农业工程学报,2017,33(23):80-92.ZHOU Liangfu,XUE Xinyu,ZHOU Lixin,et al. Research situation and progress analysis on orchard variable rate spraying technology[J]. Transactions of the CSAE,2017,33(23):80-92.(in Chinese)
    [3]张美娜,吕晓兰,常有宏,等.果树靶标精准探测系统研究进展分析[J].中国农机化学报,2016,37(10):227-233.ZHANG Meina,LüXiaolan,CHANG Youhong,et al. Research progress analysis of targent precision system for orchards[J].Journal of Chinese Agricultural Mechanization,2016,37(10):227-233.(in Chinese)
    [4]姜红花,白鹏,刘理民,等.履带自走式果园自动对靶风送喷雾机研究[J/OL].农业机械学报,2016,47(增刊):189-195.JIANG Honghua,BAI Peng,LIU Limin,et al. Caterpillar self-propelled and air-assisted orchard sprayer with automatic target spray system[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(Supp.):189-195. http:∥www. j-csam. org/jcsam/ch/reader/abstract_view. aspx? file_no=2016s029&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2016.S0. 029.(in Chinese)
    [5]卢营蓬,易文裕,庹洪章,等.果园喷雾机械现状及发展趋势[J].中国农机化学报,2018,39(1):36-41.LU Yingpeng,YI Wenyu,TUO Hongzhang,et al. Present state and trends of orchard sprayer[J]. Journal of Chinese Agricultural Mechanization,2018,39(1):36-41.(in Chinese)
    [6]李素璇,高明,魏东辉,等.精准变量喷雾控制系统的设计[J].农机化研究,2018,40(6):71-75.LI Suxuan,GAO Ming,WEI Donghui,et al. Design of variable rate fertilizer spreader[J]. Journal of Agricultural Mechanization Research,2018,40(6):71-75.(in Chinese)
    [7]丁天航,曹曙明,薛新宇,等.风送式果园喷雾机发展现状及趋势[J].中国农机化学报,2016,37(10):221-226.DING Tianhang,CAO Shuming,XUE Xinyu,et al. Current situstion and development trend of air-assisted orchard sprayer[J].Journal of Chinese Agricultural Mechanization,2016,37(10):221-226.(in Chinese)
    [8]张霖,赵祚喜,俞龙,等.超声波果树冠层测量定位算法与试验[J].农业工程学报,2010,26(9):192-197.ZHANG Lin,ZHAO Zuoxi,YU Long,et al. Positioning algorithm for ultrasonic scanning of fruit tree canopy and its tests[J].Transactions of the CSAE,2010,26(9):192-197.(in Chinese)
    [9]翟长远,赵春江,WANG Ning,等.果园风送喷雾精准控制方法研究进展[J].农业工程学报,2018,34(10):1-15.ZHAI Changyuan,ZHAO Chunjiang,WANG Ning,et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the CSAE,2018,34(10):1-15.(in Chinese)
    [10]邱白晶,闫润,马靖,等.变量喷雾技术研究进展分析[J/OL].农业机械学报,2015,46(3):59-72.QIU Baijing,YAN Run,MA Jing,et al. Research progress analysis of variable rate sprayer technology[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):59-72. http:∥www. j-csam. org/jcsam/ch/reader/abstract_view. aspx? file_no=20150309&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2015. 03. 009.(in Chinese)
    [11] TUMBO S D,SALYANI M,WHITNEY J D,et al. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume[J]. Applied Engineering in Agriculture,2002,18(3):367-372.
    [12] GILES D,DELWICHE M,DODD R. Sprayer control by sensing orchard crop characteristics:orchard architecture and spray liquid savings[J]. Journal of Agricultural Engineering Research,1989,43(8):271-289.
    [13] MAGHSOUDI H,MINAEI S,GHOBADIAN B,et al. Ultrasonic sensing of pistachio canopy for low-volume precision spraying[J]. Computers and Electronics in Agriculture,2015,112:149-160.
    [14] OSTERMAN A,GODE■A T,HO■EVAR M,et al. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer[J]. Computers and Electronics in Agriculture,2013,98:175-182.
    [15] MéNDEZ V,ROSELL J R,SANZ R,et al. Deciduous tree reconstruction algorithm based on cylinder fitting from mobile terrestrial laser scanned point clouds[J]. Biosystems Engineering,2014,124(4):78-88.
    [16] MIRANDA-FUENTES A,LLORENS J,GAMARRA-DIEZMA J L,et al. Towards an optimized method of olive tree crown volume measurement[J]. Sensors,2015,15(2):3671-3687.
    [17] FRANCISCO J,JAIME S,PABLO A,et al. LiDAR and thermal images fusion for ground-based 3D characterisation of fruit trees[J]. Biosysterm Engineering,2016,151(11):479-494.
    [18]翟长远,赵春江,王秀,等.幼树靶标探测器设计与试验[J].农业工程学报,2012,28(2):18-22.ZHAI Changyuan,ZHAO Chunjiang,WANG Xiu,et al. Design and experiment of young tree target detector[J]. Transactions of the CSAE,2012,28(2):18-22.(in Chinese)
    [19]韦雪花,王永国,郑君,等.基于三维激光扫描点云的树冠体积计算方法[J/OL].农业机械学报,2013,44(7):235-240.WEI Xuehua,WANG Yongguo,ZHENG Jun,et al. Tree crown volume calculation based on 3-D laser scanning point clouds data[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(7):235-240. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? file_no=20130741&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2013. 07. 041.(in Chinese)
    [20]刘慧,李宁,沈跃,等.融合激光三维探测与IMU姿态角实时矫正的喷雾靶标检测[J].农业工程学报,2017,33(15):88-97.LIU Hui,LI Ning,SHEN Yue,et al. Spray target detection based on laser scanning sensor and real-time correction of IMU attitude angle[J]. Transactions of the CSAE,2017,33(15):88-97.(in Chinese)
    [21]李龙龙,何雄奎,宋坚利,等.基于变量喷雾的果园自动仿形喷雾机的设计与试验[J].农业工程学报,2017,33(1):70-76.LI Longlong,HE Xiongkui,SONG Jianli,et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the CSAE,2017,33(1):70-76.(in Chinese)
    [22] YAN M,LIU P,ZHAO R,et al. Field microclimate monitoring system based on wireless sensor network[J]. Jounal of Intelligent&Fuzzy Systems,2018,35(2):1325-1337.
    [23]许林云,张昊天,张海锋,等.果园喷雾机自动对靶喷雾控制系统研制与试验[J].农业工程学报,2014,30(22):1-9.XU Linyun,ZHANG Haotian,ZHANG Haifeng,et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the CSAE,2014,30(22):1-9.(in Chinese)
    [24]刘理民,王金宇,毛文华,等.基于传感器融合阵列的果树冠层信息采集方法[J/OL].农业机械学报,2018,49(增刊):347-353,359.LIU Limin,WANG Jinyu,MAO Wenhua,et al. Canopy information acquisition method of fruit trees based on fused sensor array[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(Supp.):347-353,359. http:∥www. jcsam. org/jcsam/ch/reader/view_abstract. aspx? file_no=2018s046&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2018. S0.046.(in Chinese)
    [25]翟长远.果园靶标在线探测方法及风送变量喷雾技术研究[D].杨凌:西北农林科技大学,2012.ZHAI Changyuan. Research on orchard target on-line probing method and air-blast variable spraying technology[D]. Yangling:Northwest A&F University,2012.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700