用户名: 密码: 验证码:
航空发动机转子组件电子束焊变形预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction technology of electron beam welding deformation for aeroengine rotor components
  • 作者:王伦 ; 潘博 ; 黄怡晨 ; 李俐群
  • 英文作者:WANG Lun;PAN Bo;HUANG Yichen;LI Liqun;Aero Engine Corporation of China;State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology;
  • 关键词:热弹塑性理论 ; 固有应变法 ; 焊接变形预测
  • 英文关键词:thermal elastoplastic theory;;inherent strain method;;welding deformation prediction
  • 中文刊名:HJXB
  • 英文刊名:Transactions of the China Welding Institution
  • 机构:中国航发商用航空发动机有限责任公司;哈尔滨工业大学先进焊接与连接国家重点试验室;
  • 出版日期:2019-03-25
  • 出版单位:焊接学报
  • 年:2019
  • 期:v.40
  • 语种:中文;
  • 页:HJXB201903022
  • 页数:8
  • CN:03
  • ISSN:23-1178/TG
  • 分类号:117-123+172
摘要
航空商用发动机组件尺寸精度要求较高,且组件焊接后盘心位置不能进行机械加工,因此采用数值模拟的方法对转子组件进行焊接变形预测.试验将基于热弹塑性理论计算提取固有应变数值;通过理论计算得到GH4169合金电子束焊缝的固有应变值,分析焊接工艺参数对焊缝固有应变的影响规律;建立结构件模型,分析焊接工艺、焊接顺序及工装条件下组件焊接变形.结果表明,相比于第一,第二和第三级盘,第四级盘心轴向变形最大,且通过增大扫描速度和改变约束方式的方法可以有效减小焊接变形,从而完成对转子组件焊接变形进行预测和控制.
        The aircraft engine components require high dimensional accuracy, and the position of the core after welding cannot be machined. Therefore, the numerical simulation is used to predict the welding deformation of the rotor assembly. The experiment calculates the inherent strain value based on the theory of thermal elastoplasticity; calculate the inherent strain value of the electron beam welding of GH4169 alloy and analyze the influence of welding parameters on the inherent strain of the welding process; establish the structural model and analyze welding deformation of components under different welding parameters, sequences and fixtures. The result shows that the fourth-stage disc core has the largest axial deformation compared to the first, second and third discs, and the welding deformation can be effectively reduced by increasing the scanning speed and changing the fixtures. Therefore, the welding deformation of rotor assembly can be successfully predicted.
引文
[1]曲伸,李英,倪建成,等.航空发动机先进焊接技术应用[J].航空制造技术,2015,58(20):53-55.Qu Shen,Li Ying,Ni Jiancheng,et al.Application of advanced welding technology in aeroengine[J].Aeronautical Manufacturing Technology,2015,58(20):53-55.
    [2]苏杭,常荣辉,倪家强.基于SYSWELD的焊接模拟仿真[J].大连交通大学学报,2013,34(2):79-82.Su Hang,Chang Ronghui,Ni Jiaqiang.Welding simulation based on SYSWELD[J].Journal of Dalian Jiaotong University,2013,34(2):79-82.
    [3]张露,韩秀峰,王伦.焊接工艺在商用航空发动机中的应用[J].焊接,2016(8):54-59.Zhang Lu,Han Xiufeng,Wang Lun.Application of welding process in commercial aviation engines[J].Welding&Joining,2016(8):54-59.
    [4]陈建波.大型复杂结构焊接变形热弹塑性有限元分析[J].焊接学报,2008,29(4):72-75.Chen Jianbo.Analysis on welding distortion of large complicated structure by thermal elastic-plastic finite element method[J].Transactions of the China Welding Institution,2008,29(4):72-75.
    [5]李文亚,陈亮,余敏.GH4169合金惯性摩擦焊接头温度场显式有限元数值模拟[J].焊接学报,2011,32(6):61-64.Li Wenya,Chen Liang,Yu Min.Numerical simulation on temperature field of inertia friction welded GH4169 joint by explicit finite element analysis[J].Transactions of the China Welding Institution,2011,32(6):61-64.
    [6]方洪渊.焊接结构学[M].北京:机械工业出版社,2008.
    [7]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-40.Wang Jianhua,Lu Hao,Wei Liangwu.Prediction of welding distortions based on theory of inherent strain by FEM and its application[J].Transactions of the China Welding Institution,2002,23(6):36-40.
    [8]Deng D,Murakawa H,Liang W.Numerical simulation of welding distortion in large structures[J].Computer Methods in Applied Mechanics&Engineering,2007,196(45-48):4613-4627.
    [9]Murakawa H,Deng D,Ma N,et al.Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J].Computational Materials Science,2012,51(1):43-52.
    [10]Ma N,Chimura I,Murakawa H.Development of simulation system JWELD for assembly deformation of welded structures[J].Transactions of JWRI,2010,39:112-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700