用户名: 密码: 验证码:
基于电磁-热耦合场的输电线路高频激励融冰分析与计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and calculation of high-frequency excitation de-icing for transmission lines based on electromagnetic and thermal coupling field
  • 作者:袁肖雷 ; 周羽生 ; 王永安 ; 熊强 ; 王贤军 ; 马晓红 ; 代洲
  • 英文作者:YUAN Xiaolei;ZHOU Yusheng;WANG Yongan;XIONG Qiang;WANG Xianjun;MA Xiaohong;DAI Zhou;College of Electrical Engineering and Information,Changsha University of Science and Technology;Electric Power Research Institute of Guizhou Power Grid Co.,Ltd;
  • 关键词:输电线路 ; 高频激励融冰 ; 耦合场 ; ANSYS软件 ; 高频激励融冰时间
  • 英文关键词:transmission lines;;high-frequency excitation de-icing;;coupling field;;ANSYS software;;high-frequency excitation de-icing time
  • 中文刊名:JDQW
  • 英文刊名:Power System Protection and Control
  • 机构:长沙理工大学电气与信息工程学院;贵州电网有限责任公司电力科学研究院;
  • 出版日期:2019-01-31 10:16
  • 出版单位:电力系统保护与控制
  • 年:2019
  • 期:v.47;No.525
  • 基金:国家自然科学基金项目资助(51307009);; 贵州电网防冰减灾重点实验室研究项目资助(GZ2015-2-0055)~~
  • 语种:中文;
  • 页:JDQW201903014
  • 页数:7
  • CN:03
  • ISSN:41-1401/TM
  • 分类号:109-115
摘要
覆冰事故是影响架空输电线路安全运行的重要因素。根据架空输电线路高频激励融冰的原理分析,建立了输电线路电磁-温度场二维有限元分析模型,确定耦合场的边界条件,求解得到输电线路内部磁场分布情况。将得到的焦耳热和介质热作为热源直接转化到热场模型中计算分析,并采用有限元ANSYS软件仿真求解出覆冰输电线路温度随施加激励时间的分布情况。此外,基于此模型通过仿真分析得出不同的外界因素对高频激励融冰时间的影响规律。该研究成果为高频激励融冰技术应用于输电线路融冰提供一定的参考价值。
        Ice accident is the important factor affecting the safe operation of transmission lines. According to the principle of high-frequency excitation de-icing of overhead transmission lines, a 2D finite element model considering the coupling of electromagnetic field and thermal field of transmission lines is established. Based on the corresponding coupling field boundary conditions, magnetic field and temperature field distributions of transmission lines are obtained and the Joule's heat and Medium's heat, as heat sources, calculated in thermal field analysis is coupled with temperature field. The finite element ANSYS software method is applied to calculate the distribution of the temperature of ice-covered transmission lines with the applied excitation time. Moreover, the influence of different external factors on the time of ice-melting with high-frequency excitation is investigated based on this simulation model. The research results provide a certain reference value for the application of high-frequency excitation deicing technology in transmission lines.
引文
[1]程广通.输电线路覆冰厚度监测技术研究与应用[D].北京:华北电力大学,2014.CHENG Guangtong.Research and application on the technology of the icing-thickness monitoring of transmission line[D].Beijing:North China Electric Power University,2014.
    [2]麻赛军.输电线路覆冰远程监测与信息处理[D].重庆:重庆大学,2010.MA Saijun.Remote monitoring and information processing for icing of transmission lines[D].Chongqing:Chongqing University,2010.
    [3]张松海,施心陵,李鹏,等.基于动态拉力与倾角的输电线路覆冰过程辨识与建模[J].电力系统保护与控制,2016,44(9):57-61.ZHANG Songhai,SHI Xinling,LI Peng,et al.Identification and modeling of the power transmission line icing based on dynamic date of tension and angle[J].Power System Protection and Control,2016,44(9):57-61.
    [4]蒋兴良,兰强,毕茂强.导线临界防冰电流及其影响因素分析[J].高电压技术,2012,38(5):1225-1232.JIANG Xingliang,LAN Qiang,BI Maoqiang.Analysis on critical anti-icing current of conductor and its impacting factors[J].High Voltage Engineering,2012,38(5):1225-1232.
    [5]赵国帅,李兴源,傅闯,等.线路交直流融冰技术综述[J].电力系统保护与控制,2011,39(14):148-154.ZHAO Guoshuai,LI Xingyuan,FU Chuang,et al.Overview of de-icing technology for transmission lines[J].Power System Protection and Control,2011,39(14):148-154.
    [6]周羽生,陈佩瑶,高小刚,等.基于高频高压激励法的输电线路融冰方法研究[J].电瓷避雷器,2011(6):1-4,10.ZHOU Yusheng,CHEN Peiyao,GAO Xiaogang,et al.Research on transmission line de-icing method based on high-frequency and high-voltage excitation[J].Insulators and Surge Arresters,2011(6):1-4,10.
    [7]毕茂强.分裂导线电流转移循环融冰试验与方法研究[D].重庆:重庆大学,2013.BI Maoqiang.Experiment and method of melting ice in current transfer cycle of split conductor[D].Chongqing:Chongqing University,2013.
    [8]刘国特,郝艳捧,阳林,等.基于改进Messinger覆冰模型导线防冰临界电流计算及其影响因素分析[J].电工技术学报,2016,31(18):176-183.LIU Guote,HAO Yanpeng,YANG Lin,et al.Calculation and influencing factors analysis of conductor anti-icing critical current based on improved Messinger icing model[J].Transactions of China Electrotechnical Society,2016,31(18):176-183.
    [9]荆群伟,周羽生,刘亮,等.基于工频谐振的输电线路融冰方法研究[J].电瓷避雷器,2016(4):1-6.JING Qunwei,ZHOU Yusheng,LIU Liang,et al.Research on frequency resonant deicing method for transmission lines[J].Insulators and Surge Arresters,2016(4):1-6.
    [10]范京艺,毛安家,刘岩,等.基于负荷和环境温度曲线的输电断面短时过载能力分析[J].电力系统保护与控制,2018,46(1):116-121.FAN Jingyi,MAO Anjia,LIU Yan,et al.Analysis of the short-time overload capability of the transmission section based on the load and ambient temperature curve[J].Power System Protection and Control,2018,46(1):116-121.
    [11]张暕,何青,蓝澜,等.高压输电线路热力融冰影响因素的分析[J].中南大学学报(自然科学版),2013,44(增刊1):449-455.ZHANG Jian,HE Qing,LAN Lan,et al.Analysis of influencing factors of thermal de-icing high-voltage transmission line[J].Journal of Central South University(Science and Technology),2013,44(S1):449-455.
    [12]CHURCHILL S W,CHU H H S.Correlating equations for laminar and tubulent free convection from a horizontal cylinder[J].International Journal of Heat Mass Transfer,1975,18:1049-1953.
    [13]HUNEAULT M.A dynamic programming methodology to develop de-icing strategies during ice storms by channeling load currents in transmission networks[J].IEEE Transactions on Power Delivery,2005,20(2):1604-1610.
    [14]罗剑波,郁琛,谢云云,等.关于自然灾害下电力系统安全稳定防御方法的评述[J].电力系统保护与控制,2018,46(6):158-170.LUO Jianbo,YU Chen,XIE Yunyun,et al.A review on risk assessment of power gird security and stability under natural disasters[J].Power System Protection and Control,2018,46(6):158-170.
    [15]王燕,杜志叶,阮江军.高压架空输电线路覆冰情况下风险评估研究[J].电力系统保护与控制,2016,44(10):84-90.WANG Yan,DU Zhiye,RUAN Jiangjun.Reliability risk evaluation for the high voltage overhead transmission line under icing condition[J].Power System Protection and Control,2016,44(10):84-90.
    [16]MCCURDY J D,SULLIVAN C R,PETRENKO V F.Using dielectric losses to de-ice power transmission lines with 100 k Hz high-voltage excitation[C]//Conference Record of the 2001 IEEE Industry Applications Conference,36th IAS Annual Meeting,September30-October 4,2001,Chicago,IL,USA:2515-2519.
    [17]李宁,周羽生.应用有限元法分析覆冰输电线路高频电源除冰方法[J].高压电器,2010,46(12):107-109.LI Ning,ZHOU Yusheng.Analysis on transmission line icing elimination method by high frequency source[J].High Voltage Apparatus,2010,46(12):107-109.
    [18]刘赟,俞集辉,程鹏.基于电磁-热耦合场的架空输电线路载流量分析与计算[J].电力系统保护与控制,2015,43(9):28-34.LIU Yun,YU Jihui,CHENG Peng.Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J].Power System Protection and Control,2015,43(9):28-34.
    [19]CLOUTIER R,BERGERON A,BROCHU J.On-load network de-icer specification for a large transmission network[J].IEEE Transactions on Power Delivery,2007,22(3):1947-1955.
    [20]王燕,皇甫成,杜志叶,等.覆冰情况下输电线路有限元计算及其结构优化[J].电力系统保护与控制,2016,44(8):99-106.WANG Yan,HUANGFU Cheng,DU Zhiye,et al.Finite element calculation and structural optimization method for the high voltage transmission line under icing condition[J].Power System Protection and Control,2016,44(8):99-106.
    [21]杨安琪,龚庆武.基于BOTDR测温技术的架空线路动态增容方法[J].电力系统保护与控制,2017,45(6):16-21.YANG Anqi,GONG Qingwu.Dynamic capacity-increase of overhead line based on BOTDR temperature monitoring technology[J].Power System Protection and Control,2017,45(6):16-21.
    [22]舒立春,罗保松,蒋兴良,等.智能循环电流融冰方法及其临界融冰电流研究[J].电工技术学报,2012,27(10):26-34.SHU Lichun,LUO Baosong,JIANG Xingliang,et al.Intelligent cycled current ice melting and its critical ice-melting current study[J].Transactions of China Electrotechnical Society,2012,27(10):26-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700