用户名: 密码: 验证码:
酵母菌对重金属的吸附与抗性和解毒重金属的胞内分子机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances in Understanding the Adsorption and Resistance of Yeast to Heavy Metals and Molecular Mechanism for Intracellular Detoxi?cation of Heavy Metals
  • 作者:李丽杰 ; 贺敏 ; 贺银凤 ; 孙禹
  • 英文作者:LI Lijie;HE Min;HE Yinfeng;SUN Yu;College of Food Science and Engineering, Inner Mongolia Agricultural University;Baotou Center for Disease Control and Prevention;
  • 关键词:酵母菌 ; 重金属 ; 生物吸附 ; 抗性 ; 解毒机制
  • 英文关键词:yeast;;heavy metal;;biosorption;;resistance;;detoxi?cation mechanism
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:内蒙古农业大学食品科学与工程学院;内蒙古包头市疾病预防控制中心;
  • 出版日期:2018-12-17 14:23
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.592
  • 基金:内蒙古自然科学基金项目(2017MS0324)
  • 语种:中文;
  • 页:SPKX201903048
  • 页数:8
  • CN:03
  • ISSN:11-2206/TS
  • 分类号:339-346
摘要
利用有益的酵母菌去除食品基质、动物及人体的重金属污染是近年的研究热点。本文概述了多种酵母菌吸附及抗重金属的情况,并对酵母菌在重金属胁迫下的胞内解毒机制进行分析,包括谷胱甘肽合成的解毒机制、与酵母菌解毒重金属相关的基因和蛋白、转运蛋白介导的细胞内重金属的排出和液泡隔离机制及金属硫蛋白和植物螯合肽对重金属的螯合作用,重点从分子角度分析了酵母菌对重金属的解毒机制,归纳了解毒过程中关键性的基因和蛋白质以及它们的功能作用,旨在为酵母菌作为生物吸附剂应用于生态环境、被重金属污染的发酵食品及动物和人体提供依据。
        The use of bene?cial yeasts for removing heavy metal contamination from foods and reducing the health risk of heavy metals to humans and animals has become a research hotspot in recent years. This article summarizes recent progress in understanding the heavy metal adsorption capacity of yeast and its resistance to heavy metals. Moreover,this article analyzes the mechanisms of intracellular detoxification of heavy metals in yeast principally at the molecular level with respect to glutathione synthesis, the genes and proteins associated with yeast detoxification of heavy metals,vacuolar sequestration of heavy metals and other transporter systems, and heavy metal chelation by metallothioneins and phytochelatins. Meanwhile, the key genes and proteins and their functional roles in the process of detoxi?cation are also outlined. The aim is to provide theoretical evidence that supports the potential of yeast as a biosorbent in ecological environment protection and in reducing heavy metal contamination in fermented foods as well as the health hazards of heavy metals in humans and animals.
引文
[1]朱一民,苏秀娟,魏德洲,等.沉淀酵母菌对Pb(Ⅱ)的吸附机理研究[J].安全与环境学报,2006, 6(6):63-66. DOI:10.3969/j.issn.1009-6094.2006.06.017.
    [2]肖宁,陈强,裴浩言,等.酵母菌Y17吸附Cu2+的影响因素及吸附机理研究[J].微生物学通报,2008, 35(5):772-776. DOI:10.3969/j.issn.0253-2654.2008.05.022.
    [3]杨甜甜,孔慧芳,常雪玲,等.安琪酵母对铅的吸附作用研究[J].陕西农业科学,2015, 61(8):21-23; 27. DOI:10.3969/j.issn.0488-5368.2015.08.006.
    [4]袁红莉,李志建,王能飞,等.一株红酵母的抗镉机制[J].中国科学(D辑:地球科学),2005, 35(S1):219-225. DOI:10.3969/j.issn.1674-7240.2005.z1.02.
    [5]王小波,李学如,茆灿泉,等.耐镉马克思克鲁维酵母重金属镉吸附特性的研究[J].菌物学报,2013, 32(5):868-875. DOI:10.13346/j.mycosystema.2013.05.013.
    [6]魏轲.南极酵母重金属胁迫的蛋白组学及MT基因的克隆和分析[D].哈尔滨:哈尔滨工业大学,2014:17-18.
    [7] FERNANDEZ P M, MARTORELL M M, BLASER M G, et al.Phenol degradation and heavy metal tolerance of Antarctic yeasts[J].Extremophiles, 2017, 21(3):445-457. DOI:10.1007/s00792-017-0915-5.
    [8] LI C S, JIANG W, NING M, et al. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae[J].Bioresource Technology,2014, 155(2):116-121. DOI:10.1016/j.biortech.2013.12.098.
    [9] MA N, LI C S, DONG X Y, et al. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae[J]. Journal of Basic Microbiology, 2015,55(8):1002-1012. DOI:10.1002/jobm.201400847.
    [10] ANDREEVA N,RYAZANOVA L,DMITRIEV V,et al. Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola[J]. Folia Microbiologica, 2014, 59(5):381-389. DOI:10.1007/s12223-014-0310-x.
    [11] KULAKOVSKAYA T, RYAZANOVA L, ZVONAREV A.The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation[J]. Folia Microbiologica,2018, 63(4):507-510. DOI:10.1007/s12223-018-0583-6.
    [12] OLADUNJOYE O, KEISUKE M,HITOSHI S,et al. Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp.[J].AMB Express, 2016, 6(1):99-111. DOI:10.1186/s13568-016-0271-3.
    [13] BANKAR A, ZINJARDE S, SHINDE M, et al. Heavy metal tolerance in marine strains of Yarrowia lipolytica[J]. Extremophiles, 2018, 22(4):617-628. DOI:10.1007/s00792-018-1022-y.
    [14] RADIC D S, PAVLOVIC V P, LAZOVIC M M, et al. Copper-tolerant yeasts:raman spectroscopy in determination of bioaccumulation mechanism[J]. Environmental Science and Pollution Research,2017,24(27):21885-21893. DOI:10.1007/s11356-017-9817-4.
    [15] ILYAS S, REHMAN A, ILYAS Q. Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater[J]. Pakistan Journal of Zoology, 2017, 49(3):769-775. DOI:10.17582/journal.pjz/2017.49.3.769.775.
    [16] LEE J, GODON C, LAGNIEL G, et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast[J]. Journal of Biological Chemistry, 1999, 274(23):16040-16046. DOI:10.1074/jbc.274.23.16040.
    [17] VIDO K, SPECTOR D, LAGNIEL G, et al. A proteome analysis of the cadmium response in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2001, 276(11):8469-8474. DOI:10.1074/jbc.M008708200.
    [18] FAUCHON M,LAGNIEL G,AUDE J, et al. Sulfur sparing in the yeast proteome in response to sulfur demand[J]. Molecular Cell, 2002,9(4):713-723. DOI:10.1016/S1097-2765(02)00500-2.
    [19] LAFAYE A, JUNOT C, PEREIRA Y, et al. Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism[J]. Journal of Biological Chemistry, 2005, 280(26):24723-24730. DOI:10.1074/JBC.M502285200.
    [20] HUANG Xinhe, LI Yuxing, PAN Jingmei, et al. RNA-Seq identifies redox balance related gene expression alterations under acute cadmium exposure in yeast[J]. Environmental Microbiology Reports, 2016, 8(6):1038-1047. DOI:10.1111/1758-2229.12484.
    [21] THORSEN M,LAGNIEL G,KRISTIANSSON E,et al.Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite[J].Physiological Genomics, 2007, 30(1):35-43. DOI:10.1152/physiolgenomics.00236.2006.
    [22] JIN Y H, DUNLAP P E, MCBRIDE S J, et al. Global transcriptome and deletome profiles of yeast exposed to transition metals[J]. PLoS Genetics, 2008, 4(4):253-260. DOI:10.1371/journal.pgen. 1000053.
    [23] ILYAS S, REHMAN A, COELHO A, et al. Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge:identification of a protein expression signature for heavy metal exposure[J]. Journal of Proteomics, 2016, 141(1):47-56.DOI:10.1016/j.jprot.2016.04.012.
    [24] KHAN Z, REHMAN A, NISAR M A, et al. Molecular basis of Cd2+stress response in Candida tropicalis[J]. Applied Microbiology&Biotechnology, 2017, 101(20):7715-7728. DOI:10.1007/s00253-017-8503-2.
    [25] SEREIRO A, LOPES J,NICOLAS A,et al. Yeast genes involved in cadmium tolerance:identification of DNA replication as a target of cadmium toxicity[J]. DNA Repair, 2008, 7(8):1262-1275.DOI:10.1016/j.dnarep.2008.04.005.
    [26] THORSEN M, PERRONE G G, KRISTIANSSON E, et al.Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae[J]. BMC Genomics, 2009, 10(12):105-11 1.DOI:10.1186/1471-2164-10-105.
    [27] TRILISENKO L, KULAKOVSKAYA E, KULAKOVSKAYA T. The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate[J]. Journal of Basic Microbiology, 2017, 57(11):982-986. DOI:10.1002/jobm.201700257.
    [28]叶美玲.南极酵母AN5重金属Cu2+胁迫的转录组学研究[D].哈尔滨:哈尔滨工业大学,2015:11-22.
    [29] GUMACINTRON Y, BANDYOPADHYAY A, ROSADO W,et al. Transcriptomic analysis of cobalt stress in the marine yeast Debaryomyces hansenii[J]. FEMS Yeast Research, 2015, 15(8):1-8.DOI:10.1093/femsyr/fov099.
    [30]李春生.库德毕赤酵母重金属积累特性及高盐/低pH下镉抗性提高机理研究[D].青岛:中国海洋大学,2015:66-90.
    [31] FANG Z J, CHEN Z X, WANG S, et al. Overexpression of OLE1enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae[J]. Applied&Environmental Microbiology, 2016, 83(1):2319-2325. DOI:10.1128/AEM.02319-16.
    [32] BAE W, CHEN X. Proteomic study for the cellular responses to Cd2+in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry[J].Molecular and Cellular Proteomics MCP, 2004, 3(6):596-607.DOI:10.1074/mcp.M300122-MCP200.
    [33] YIN Z, STEAD D, WALKER J, et al. A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hogl stress-activated MAPK in regulating the stress-induced proteome[J]. Proteomics, 2010, 9(20):4686-4703.DOI:10.1002/pmic.200800958.
    [34] GUO Lan, GANGULY A, SUN Lingling, et al. Global fitness profiling identifies arsenic and cadmium tolerance mechanisms in fission yeast[J]. G3 Genesgenetics, 2016, 6(10):3317-3333. DOI:10.1534/g3.116.033829.
    [35] WYSOCKI R, TAMAS M J. How Saccharomyces cerevisiae copes with toxic metals and metalloids[J]. FEMS Microbiology Reviews,2010, 34(6):925-951. DOI:10.1111/j.1574-6976.2010.00217.x.
    [36] ADLE D J, SINANI D, KIM H, et al. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2007, 282(2):947-955. DOI:10.1074/jbc.M609535200.
    [37] CUI Zhifeng,HIRATA D,TSUCHIYA E,et al. The multidrug resistance-associated protein(MRP)subfamily(Yrsl/Yorl)of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions[J]. Journal of Biological Chemistry, 1996,271(25):14712-14716. DOI:10.1074/jbc.271.25.14712.
    [38] NAGY Z, MONTIGNY C, LEVERRIER P, et al. Role of the yeast ABC transporter Yorlp in cadmium detoxification[J]. Biochimie,2006, 88(11):1665-1671. DOI:10.1016/j.biochi.2006.05.014.
    [39] LI Zesheng, SZCZYPKA M, LU Yuping, et al. The yeast cadmium factor protein(YCF1)is a vacuolar glutathione S-conjugate pump[J].Journal of Biological Chemistry, 1996, 271(11):6509-6517.DOI:10.1074/jbc.271.11.6509.
    [40] PAUMI C M, MENENDEZ J, ARNOLDO A, et al. Mapping proteinprotein interactions for the yeast ABC transporter Ycflp by integratedsplit-ubiquitin membrane yeast two-hybrid analysis[J]. Molecular Cell,2007, 26(1):15-25. DOI:10.1016/j.molcel.2007.03.011.
    [41] MACDIARMID C W,MILANICK M A,EIDE D J. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2002, 277(42):39187-39194. DOI:10.1074/jbc.M205052200.
    [42] ORTIZ D F, RUSCITTI T, MCCUE F K, et al. Transport of metalbinding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein[J]. Journal of Biological Chemistry, 1995, 270(9):4721-4728. DOI:10.1074/jbc.270.9.4721.
    [43] TESCHNER J,LACHMANN N,SCHULZE J,et al. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis[J]. Plant Cell, 2010, 22(2):468-480.DOI:10.1105/tpc. 109.068478.
    [44] LAUER J C, BONATTO D, MIELNICZKI-PEREIRA A, et al. The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion[J]. FEMS Microbiology Letters, 2008, 285(1):79-88. DOI:10.1111/j.1574-6968.2008.01214.x.
    [45] YANG T, CHEN M, WANG J. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance[J]. Trends in Analytical Chemistry,2015, 66:90-102. DOI:10.1016/j.trac.2014.11.016.
    [46] LITI G, CARTER D M,MOSES A M,et al. Population genomics of domestic and wild yeasts[J]. Nature, 2009, 458:337-341.DOI:10.1038/nature07743.
    [47] BORRELLY G P M, HARRISON M D, ROBINSON A K, et al.Surplus zinc is handled by Zyml metallothionein and Zhf endoplasmicreticulum transporter in Schizosaccharomyces pombe[J]. Journal of Biological Chemistry, 2002, 277(33):30394-30400. DOI:10.1074/jbc.M203145200.
    [48] YANG C E, CHU I,WEI Y H, et al. Surface display of synthetic phytochelatins on Saccharomyces cerevisiae for enhanced ethanol production in heavy metal-contaminated substrates[J]. Bioresource Technology, 2017, 245:1455-1460. DOI:10.1016/j.biortech.2017.05.127.
    [49] ZHANG J, ZHANG M, TIAN S, et al. Metallothionein 2(SaMT2)from Sedum alfredii hance confers increased Cd tolerance and accumulation in yeast and tobacco[J]. PLoS ONE, 2014, 9(7):e102750. DOI:10.1371/joumal.pone.0102750.
    [50] RUTA L, LIN Y, KISSEN R, et al. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation[J]. PLoS ONE, 2017, 12(5):e0178393. DOI:10.1371/journal.pone.0178393.
    [51]徐炳政,张东杰,王颖,等.酵母源金属硫蛋白对急性铅中毒小鼠的排铅及过氧化损伤修复作用[J].中国生物制品学杂志,2015,28(11):1142-1146. DOI:10.13200/j.cnki.cjb.001135.
    [52]王颖,王欣卉,徐炳政,等.酵母源金属硫蛋白对慢性汞中毒小鼠氧化损伤的修复作用[J].食品科学,2016, 37(15):242-246.DOI:10.7506/spkx1002-6630-201615041.
    [53] IINOUHE M, SUMIYOSHI M, TOHOYAMA H, et al. Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts[J]. Plant&Cell Physiology, 1996, 37(3):341-346.DOI:10.1093/oxfordjournals.pcp.a028951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700