用户名: 密码: 验证码:
深水碎屑流与浊流混合事件层类型及成因机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current
  • 作者:操应长 ; 杨田 ; 王艳忠 ; 张少敏 ; 王思佳 ; 张青青 ; 王心怿
  • 英文作者:CAO Yingchang;YANG Tian;WANG Yanzhong;ZHANG Shaomin;WANG Sijia;ZHANG Qingqing;WANG Xinyi;School of Geosciences,China University of Petroleum (East China);Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:碎屑流 ; 浊流 ; 流体转化 ; 过渡流体 ; 混合流 ; 混合事件层 ; 深水重力流 ; 成因机制
  • 英文关键词:debris flow;;turbidity current;;flow transformation;;transitional flow;;hybrid flow;;hybrid event bed;;deep-water gravity flow;;genesis
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国石油大学(华东)地球科学与技术学院;海洋国家实验室海洋矿产资源评价与探测技术功能实验室;
  • 出版日期:2016-12-07 11:17
  • 出版单位:地学前缘
  • 年:2017
  • 期:v.24;No.125
  • 基金:国家科技重大专项(2011ZX05009-003);; 中央高校基本科研业务费专项资金项目(14CX06070A)
  • 语种:中文;
  • 页:DXQY201703027
  • 页数:15
  • CN:03
  • ISSN:11-3370/P
  • 分类号:240-254
摘要
同一重力流事件形成的包含碎屑流和浊流及其之间过渡流体的混合流沉积形成的沉积层称为混合事件层。混合事件层主要包含下部砂质碎屑流-上部浊流混合事件层(类型1)和下部浊流-上部泥质碎屑流混合事件层(类型2)以及泥质碎屑流和浊流频繁互层混合事件层(类型3)3种类型。类型1主要为流体转化成因,包含液化作用、沉积物破碎、流体顶部剪切侵蚀、接触面不稳定性和波浪破碎、水力跳跃、流体头部与环境水体混合和多种机制作用下的整体转化7种成因认识。类型2和类型3主要涉及流体转化及流体差异搬运和沉降过程成因,包含碎屑流覆盖浊流、碎屑流内部差异沉降、浊流侵蚀转化、浊流膨胀减速、局部沉积物垮塌和浮力转化6种成因认识。下部砂质碎屑流上部浊流混合事件层和下部浊流上部厚层富含泥质碎屑的泥质碎屑流混合事件层在沉积近端到沉积远端均有分布,多呈条带状或树枝状;下部浊流上部贫泥质碎屑的泥质碎屑流混合事件层主要在沉积远端或基底相对低部位分布,多呈环带状或牛眼状。深水重力流混合事件层的分布主要受泥质含量、颗粒粒度、水体密度等内部因素和重力流成因机制、古地形和构造活动等外部因素综合控制。深水重力流混合事件层的形成及其分布研究对于丰富和完善重力流沉积理论,指导现阶段深水重力流砂体常规和非常规油气勘探及理解自然活动规律、防灾减灾具有重要意义。现阶段对深水重力流混合事件层的多种成因及形成条件和横向分布演化规律的研究还有待进一步深入。
        Hybrid event bed refers to the deposit of mixed deep-water gravity flow in a single gravity flow event which contains turbidity current,debris flow and sometimes transitional flow.Hybrid event beds can be subdivided into three types:sandy debrite-turbidite couplets(type 1),co-genetic turbidite-muddy debrite beds(type 2),and turbidite-muddy debrite multi-interlayered beds(type 3).Seven kinds of recognization of the genesis of type 1beds include liquefaction,breaking up of flow,shearing on the top leading to erosion,mixing due to instability and wave formation at the surface,hydraulic jump,the head of the flow mixing with the environmental water body,and the integrated transformation by the action of multi mechanism.The geneses of type 2and type 3beds are the transformation of gravity flow and different transport and settling processes including the covering of turbidite by debris flow,the late-stage settling of sand from the debris flow plug,the transformation from turbidity currents into debris flows by erosion of muddy base,the transformation from turbidity currents into debris flows by deceleration and expansion,debris flows formed by local margin failure in turbidity currents,and debris flows formed by reversing buoyancy in turbidity current.The sandy debriteturbidite couplets and the co-genetic turbidite-muddy debrite beds with rich mud clasts are distributed from proximal to distal in banded or leaf patterns.The co-genetic turbidite-muddy debrite beds with poor mud clasts are distributed in bulls-eye patterns in distal or in the lower parts of the basin.The distribution of the hybrid event beds is influenced by the internal factors such as the content of mud,the size of particle,the density of flow and by the external factors such as the genesis of gravity flow,paleotopography,and tectonic movements.The research of the genesis and distribution of the hybrid event beds is important for perfecting the deep-water gravity theory,guiding the exploration of conventional and unconventional oil and gas in deepwater sandstone,and understanding the law of natural activities thus to avoid potential hazards. More attentions should be paid to the various geneses,formation conditions,and the lateral distribution and evolution law of hybrid event beds.
引文
[1]MULDER T,ALEXANDER J.The physical character of subaqueous sedimentary density flows and their deposits[J].Sedimentology,2001,48(2):269-299.
    [2]TALLING P J,AMY L A,WYNN R B.New insight into the evolution of large-volume turbidity currents:comparison of turbidite shape and previous modelling results[J].Sedimentology,2007,54(4):737-769.
    [3]TALLING P J,WYNN R B,MASSON D G,et al.Onset of submarine debris flow deposition far from original giant landslide[J].Nature,2007,450:541-544.
    [4]TALLING P J,MALGESINI G,FELLETTI F.Can liquefied debris flows deposit clean sand over large areas of sea floor?Field evidence from the Marnoso-arenacea Formation,Italian Apennines[J].Sedimentology,2012,60:720-762.
    [5]TALLING P J,MASSON D G,SUMNER E J,et al.Subaqueous sediment density flows:depositional processes and deposit types[J].Sedimentology,2012,59(7):1937-2003.
    [6]TALLING P J.Hybrid submarine flows comprising turbidity current and cohesive debris flow:deposits,theoretical and experimental analyses,and generalized models[J].Geosphere,2013,9(3):460-488.
    [7]TALLING P J.On the triggers,resulting flow types and frequencies of subaqueous sediment density flows in different settings[J].Marine Geology,2014,352(3):155-182.
    [8]TALLING P J,PAULL C K,PIPER D J W.How are suba-queous sediment density flows triggered,what is their internal structure and how does it evolve?Direct observations from monitoring of active flows[J].Earth-Science Reviews,2013,125(3):244-287.
    [9]AMY L A,MCCAFFREY W D,TALLING P J.Special Issue Introduction:sediment gravity flows-Recent insights into their dynamic and stratified/composite nature[J].Marine and Petroleum Geology,2009,26:1897-1899.
    [10]YANG T,CAO Y C,WANG Y Z,et al.Status and trends in research on deep-water gravity flow deposits[J].Acta Geologica Sinica(English Edition),2015,89(2):610-631.
    [11]FISHER R V.Flow transformation in sediment gravity flows[J].Geology,1983,11(5):273-274.
    [12]HAMPTON M A.The role of subaqueous debris flow in generating turbidity currents[J].Journal of Sedimentary Research,1972,42(4):775-793.
    [13]MUTTI E,TINTERRI R,REMACHA E,et al.An introduction to the analysis of ancient turbidite basins from an outcrop perspective[J].AAPG Course Notes,1999,39:93.
    [14]MUTTI E,TINTERRI R,BENEVELLI G,et al.Deltaic,mixed and turbidite sedimentation of ancient foreland basins[J].Marine and Petroleum Geology,2003,20(6):733-755.
    [15]MUTTI E,BERNOULLI D,LUCCHI F R,et al.Turbidites and turbidity currents from Alpine‘flysch’to the exploration of continental margins[J].Sedimentology,2009,56(1):267-318.
    [16]FELIX M,PEAKALL J.Transformation of debris flows into turbidity currents:mechanisms inferred from laboratory experiments[J].Sedimentology,2006,53(1):107-123.
    [17]HAUGHTON P D W,BARKER S M,MCCAFFREY W D.‘Linked’debrites in sand-rich turbidite systems-origin and significance[J].Sedimentology,2003,50(3):459-482.
    [18]TALLING P J,AMY L A,WYNN R B,et al.Beds comprising debrite sandwiched within co-genetic turbidite:origin and widespread occurrence in distal depositional environments[J].Sedimentology,2004,51(1):163-194.
    [19]FELIX M,LESZCZYN'SKI S,S'L CZKA A,et al.Field expressions of the transformation of debris flows into turbidity currents,with examples from the Polish Carpathians and the French Maritime Alps[J].Marine and Petroleum Geology,2009,26(10):2011-2020.
    [20]HAUGHTON P D W,DAVIS C,MCCAFFREY W,et al.Hybrid sediment gravity flow deposits:classification,origin and significance[J].Marine and Petroleum Geology,2009,26(10):1900-1918.
    [21]AMY L A,PEACHEY S A,GARDINER A A,et al.Prediction of hydrocarbon recovery from turbidite sandstones with linked-debrite facies:numerical flow-simulation studies[J].Marine and Petroleum Geology,2009,26(10):2032-2043.
    [22]PYLES D R,JENNETTE D C.Geometry and architectural associations of co-genetic debrite-turbidite beds in basin-margin strata,Carboniferous Ross Sandstone(Ireland):applications to reservoirs located on the margins of structurally confined submarine fans[J].Marine and Petroleum Geology,2009,26(10):1974-1996.
    [23]SUMNER E J,TALLING P J,AMY L A.Deposits of flows transitional between turbidity current and debris flow[J].Geology,2009,37(11):991-994.
    [24]ITO M.Downfan Transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone:the Lower Pleistocene Otadai Formation,Boso Peninsula,Japan[J].Journal of Sediment Research,2008,78(10):668-682.
    [25]BAAS J H,BEST J L,JEFFREY P.Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows[J].Sedimentology,2011,58(7):1953-1987.
    [26]LOWE D R.Subaqueous liquefied and fluidized sediment flows and their deposits[J].Sedimentology,1976,23:285-308.
    [27]LOWE D R,GUY M.Slurry-flow deposits in the Britannia Formation(Lower Cretaceous),North Sea:a new perspective on the turbidity current and debris flow problem[J].Sedimentology,2000,47(1):31-70.
    [28]LOWE D R,GUY M,PALFREY A.Facies of slurry-flow deposits,Britannia Formation(Lower Cretaceous),North Sea:implications for flow evolution and deposit geometry[J].Sedimentology,2003,50(1):45-80.
    [29]FONNESU M,HAUGHTON P,FELLETTI F,et al.Short length-scale variability of hybrid event beds and its applied significance[J].Marine and Petroleum Geology,2015,67:583-603.
    [30]JOBE Z R,LOWE D R,MORRIS W R.Climbing-ripple successions in turbidite systems:depositional environments,sedimentation rates and accumulation times[J].Sedimentology,2012,59(3):867-898.
    [31]李云,郑荣才,朱国金,等.沉积物重力流研究进展综述[J].地球科学进展,2011,26(2):157-165.
    [32]李存磊,任伟伟,唐明明.流体性质转换机制在重力流沉积体系分析中应用初探[J].地质论评,2012,58(2):285-296.
    [33]杨田,操应长,王艳忠,等.深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例[J].石油学报,2015,36(8):1048-1059.
    [34]BAAS J H,BEST J L,PEAKALL J,et al.A phase diagram for turbulent,transitional,and laminar clay suspension flows[J].Journal of Sediment Research,2009,79(4):162-183.
    [35]JACKSON C A L,ZAKARIA A A,JOHNSON H D,et al.Sedimentology,stratigraphic occurrence and origin of linked debrites in the West Crocker Formation(Oligo-Miocene),Sabah,NW Borneo[J].Marine and Petroleum Geology,2009,26(10):1957-1973.
    [36]SYLVESTER Z,LOWE D R.Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians,Romania[J].Sedimentology,2004,51(5):945-972.
    [37]KANE I A,PONTEN A S M.Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J].Geology,2012,40(12):1119-1122.
    [38]JACKSON C A L,JOHNSON H D.Sustained turbidity currents and their interaction with debrite-related topography:Labuan Island,offshore NW Borneo,Malaysia[J].Sediment Geology,2009,219:77-96.
    [39]HODGSON D M.Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre,Karoo Basin,South Africa[J].Marine and Petroleum Geology,2009,26(10):1940-1956.
    [40]PRITCHARD D,GLADSTONE C.Reversing buoyancy in turbidity currents:developing a hypothesis for flow transformation and for deposit facies and architecture[J].Marine and Petroleum Geology,1997,26(10):1997-2010.
    [41]MALKOWSKI M A,SHARMAN G R,GRAHAM S A,et al.Characterisation and diachronous initiation of coarse clastic deposition in the Magallanes-Austral foreland basin,Patagonian Andes[J].Basin Research,2015,378(11):156-163.
    [42]ZENG J,LOWE D R,PRIOR D B,et al.Flow properties of turbidity currents in Bute Inlet,British Columbia[J].Sedimentology,2006,38(6):975-996.
    [43]WOOD A,SMITH A J.The sedimentation and sedimentary history of the Aberystwyth Grits(Upper Llandoverian)[J].Quarterly Journal of the Geological Society of London,1958,114,163-195.
    [44]RICCI LUCCHI F,VALMORI E.Basin-wide turbidites in a Miocene,over-supplied deep-sea plain:ageometrical analysis[J].Sedimentology,1980,27(27):241-270.
    [45]HIGGS R.Comments on‘Hybrid sediment gravity flowsclassification,origin and significance’from Haughton,Davis,McCaffrey and Barker(Marine and Petroleum Geology,2009,26,1900-1918)[J].Marine and Petroleum Geology,2010,27(9):2062-2065.
    [46]HAUGHTON P D W,DAVIS C,MCCAFFREY W,et al.Reply to comment by R.Higgs on‘Hybrid sediment gravity flows-classification,origin and significance’[J].Marine and Petroleum Geology,2010,27(9):2066-2069.
    [47]KUENEN P H,MIGLIORINI C I.Turbidity currents as a cause of graded bedding[J].Journal of Geology,1950,58(2):91-127.
    [48]STIX J.Flow evolution of experimental gravity currents:implications for pyroclastic flows at volcanoes[J].Journal of Geology,2001,109(3):381-398.
    [49]SCHWARZ H U.Subaqueous slope failures-experiments and modern occurrences[M].Stuttgart:Schweizerbart’sche Verlagsbuchhandlung,1982.
    [50]MARR J G,HARFF P A,SHANMUGAM G.Experiments on subaqueous sandy gravity flows:the role of clay and water content in flow dynamics and depositional structures[J].Geological Society of America Bulletin,2001,113(11):1377-1386.
    [51]TALLING P J,PEAKALL J,SPARKS R S J.Experimental constraints on shear mixing rates and processes:implications for the dilution of submarine debris flows[C]∥DOWDESWEL J A,COFAIGH C.Glacier-influenced sedimentation on high-latitude continental margins.Geological Society,London,Special Publications,2002,203(1):89-103.
    [52]MOHRIG D,WHIPPLE K X,HONDZO M,et al.Hydroplaning of subaqueous debris flows[J].Geological Society of America Bulletin,1998,110(3):387-394.
    [53]MORGENSTERN N R.Submarine slumping and the initiation of turbidity currents[M]∥RICHARDS A F.Marine geotechnique.Urbana:University of Illinois Press,1967.
    [54]ANDEL T H,KOMAR P D.Ponded sediments of the MidAtlantic ridge between 22°and 23°north latitude[J].Geological Society of America Bulletin,1969,80:1163-1190.
    [55]ALLEN J R L.Mixing at turbidity current heads,and its geological implications[J].Journal of Sediment Petrology,1971,41(1):97-113.
    [56]SOUTHERN S J,PATACCI M,FELLETTI F,et al.Influence of flow containment and substrate entrainment upon sandy hybrid event beds containing a co-genetic mud-clast-rich division[J].Sediment Geology,2015,321:105-122.
    [57]MCCAFFREY W,KNELLER B.Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation[J].AAPG Bulletin,2001,85(6):971-988.
    [58]MCCAVE I N,JONES K P N.Deposition of Ungraded muds from high-density non-turbulent turbidity currents[J].Nature,1988,333:250-252.
    [59]CANTERO M I,CANTELLI A,PIRMEZ C,et al.Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents[J].Nature Geoscience,2011,5(1):42-45.
    [60]PATACCI M,HAUGHTON P D W,MCCAFFREY W D.Rheological complexity in sediment gravity flows forced to decelerate against a confining slope,Braux,SE France[J].Journal of Sediment Research,2014,84(4):270-277.
    [61]DUCASSOU E,MIGEON S,CAPOTONDI L,et al.Runout distance and erosion of debris-flows in the Nile deep-seafan system:evidence from lithofacies and micropalaeontological analyses[J].Marine and Petroleum Geology,2013,39(1):102-123.
    [62]TRIPSANAS E K,PIPER D J W,JENNER K A,et al.Submarine mass-transport facies:new perspectives on flow processes from cores on the eastern North American margin[J].Sedimentology,2008,55(1):97-136.
    [63]DAVIS C,HAUGHTON P,MCCAFFREY W,et al.Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan,Palaeocene Central North Sea,UKCS[J].Marine and Petroleum Geology,2009,26(10):1919-1939.
    [64]BARKER S P,HAUGHTON P D W,MCCAFFREY W D,et al.Development of rheological heterogeneity in clay-rich high-density turbidity currents:Aptian Britannia sandstone member,U.K.Continental Shelf[J].Journal of Sediment Research,2008,78(2):45-68.
    [65]PIPER D J W,NORMARK W R.Processes that initiate turbidity currents and their influence on turbidites:a marine geology perspective[J].Journal of Sediment Research,2009,79(6):347-362.
    [66]GIRARD F,GHIENNE J F,RUBINO J L.Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a Late Ordovician proglacial delta(Murzuq Basin,SW Libya)[J].Journal of Sediment Research,2012,82(9):688-708.
    [67]PAULL C K,USSLER I W,CARESS D W,et al.Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon,offshore California[J].Geosphere,2010,6(6):755-774.
    [68]GEORGIOPOULOU A,WYNN R B,MASSON D G,et al.Linked turbidite-debrite resulting from recent Sahara Slide headwall reactivation[J].Marine and Petroleum Geology,2009,26(10):2021-2031.
    [69]MULDER T,SYVITSKI J P M,MIGEON S,et al.Marine hyperpycnal flows:initiation,behavior and related deposits.A review[J].Marine and Petroleum Geology,2003,20(6):861-882.
    [70]杨田,操应长,王艳忠,等.异重流沉积动力学过程及沉积特征[J].地质论评,2015,61(1):23-33.
    [71]SHANMUGAM G.New perspectives on deep-water sandstones:implications[J].Petroleum Exploration and Development,2013,40(3):316-324.
    [72]MALGESINI G.Evolution of submarine sediment density flows deduced from long distance bed correlations[D].Southampton:University of Southampton,2012.
    [73]GALY V,FRANCE-LANORD C,BEYSSAC O,et al.Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J].Nature,2007,450:407-410.
    [74]PETTER A L,STEEL R J.Hyperpycnal flow variability and slope organization on an Eocene shelf margin,Central Basin,Spitsbergen[J].AAPG Bulletin,2006,90(10):1451-1472.
    [75]TALLING P J,ALLIN J,ARMITAGE D A,et al.Key future directions for research on turbidity currents and their deposits[J].Journal of Sediment Research,2015,85(2):153-169.
    [76]EGGENHUISEN J T,MCCAFFREY W D,HAUGHTON P D W,et al.Reconstructing large-scale remobilisation of deepwater deposits and its impact on sand-body architecture from cored wells:the Lower Cretaceous Britannia Sandstone Formation,UK North Sea[J].Marine and Petroleum Geology,2010,27(7):1595-1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700