用户名: 密码: 验证码:
相变材料热管理下电池热失控传播过程数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study of Battery Thermal Runaway Propagation Using PCM for Thermal Management
  • 作者:邹时波 ; 李顶根 ; 李卫 ; 田瑞华
  • 英文作者:ZOU Shi-Bo;LI Ding-Gen;LI Wei;TIAN Rui-Hua;China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology;School of Energy and Power Engineering, Huazhong University of Science and Technology;
  • 关键词:锂离子电池 ; 热失控传播 ; 格子Boltzmann ; 相变材料热管理 ; 热导率
  • 英文关键词:lithium ion batteries;;thermal runaway propagation;;lattice boltzmann;;phase change material thermal management;;thermal conductivity
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:华中科技大学中欧清洁与可再生能源学院;华中科技大学能源与动力工程学院;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家科技支撑计划(No.2015BAG17B02)
  • 语种:中文;
  • 页:GCRB201905020
  • 页数:7
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:147-153
摘要
为明晰相变材料热管理下热失控传播速率与材料属性的关系,采用格子Boltzmann方法对18650锂离子电池模组计算分析热失控在不同的相变材料特性下的传播特性。结果表明:相变材料的潜热变化对热失控的传播影响不明显;模组内电池之间的热失控传播时间随着热导率的增加先减小后增加,在某热导率数值左右存在一个拐点,所得结论为优化动力电池模组热管理提供了参考依据。
        In order to clarify the relationship between thermal runaway propagation rate and material properties in thermal management of PCM materials. Lattice Boltzmann method was used to calculate the propagation characteristics of thermal runaway under different phase change material characteristics by 18650-lithium ion battery module. The results show that the latent heat change of the phase change material has no obvious effect on the thermal runaway. The thermal runaway time between the modules in the module decreases first and then increases with the increase of the thermal conductivity. The conclusion provides a reference for the optimization of thermal management of power battery module.
引文
[1] Xing Y, Ma E W M, Tsui K L, et al. Battery Management Systems in Electric and Hybrid Vehicles[J]. Energies, 2011, 4(11):97-106
    [2] Feng X, Sun J, Ouyang M, et al. Characterization of Large Format Lithium ion Battery Exposed to Extremely High Temperature[J]. Journal of Power Sources, 2014,272:457-467
    [3] Lopez C F. Modeling and Experimental Study of LithiumIon Battery Thermal Behavior[M]. Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems, Springer International Publishing, 2015:195-207
    [4] Hermann W A. Cell Separator for Minimizing Ther-mal Runaway Propagation Within a Battery Pack:US,US8367239[P]. 2013
    [5] Khateeb S A, Farid M M, Selman J R, et al. Design and Simulation of a Lithium-ion Battery with a Phase Change Material Thermal Management System for an Electric Scooter[J]. Journal of Power Sources, 2015,128(2):292-307
    [6] Kizilel R, Lateef A, Sabbah R, et al. Passive Control of Temperature Excursion and Uniformity in High-energy Liion Battery Packs at High Current and Ambient Temperature[J]. Journal of Power Sources, 2008, 183(1):370-375
    [7] Rao Z, Wang S, Zhang G. Simulation and Experiment of Thermal Energy Management with Phase Change Material for Ageing LiFePO_4, Power Battery[J]. Energy Conversion&Management, 2011, 52(12):3408-3414
    [8] Kizilel R, Sabbah R, Selman J R, et al. An Alternative Cooling System to Enhance the Safety of Li-ion Battery Packs[J]. Journal of Power Sources, 2009, 194(2):1105-1112
    [9] Mahamud R, Park C. Reciprocating air Flow for Li-ion Battery Thermal Management to Improve Temperature Uniformity[J]. Journal of Power Sources, 2011, 196(13):5685-5696
    [10]尚怀芳.锂离子电池正极材料LiFePO_4和LiMn204的表面结构及电化学性性能研究[D].北京工业大学,2013Shang Huafang. Study on Surface Structure and Electrochemical Properties of LiFePO_4 and LiMn2O_4 Cathode Materials for Lithium Ion Batteries[D]. Beijing University of Technology, 2013
    [11] Spo tnitz R, Franklin J. Abuse Behavior of High-power,Lithium-ion Cells[J]. Journal of Power Sources, 2003,113(1):81-100
    [12] Kizilel R, Sabbah R, Selman J R, et al. An Alternative Cooling System to Enhance the Safety of Li-ion Battery Packs[J]. Journal of Power Sources, 2009, 194(2):1105-1112
    [13] Feng X, He X, Ouyang M, et al. Thermal Runaway Propagation Model for Designing a Safer Battery Pack with 25Ah LiNi_x Coy Mn_z O_2, Large Format Lithium ion Battery[J]. Applied Energy, 2015, 154:74-91
    [14]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2009Guo Zhaoli, Zheng Chuguang. The Principle and Application of Lattice Boltzmann Method[M]. Beijing:Science Press, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700