用户名: 密码: 验证码:
移动单载波水声通信中的有效空时处理技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Efficient spatial and temporal processing for highly mobile single-carrier underwater acoustic communications
  • 作者:张友文 ; 石绍 ; 黄福朋 ; 孙大军
  • 英文作者:ZHANG Youwen;SHI Shaoqi;HUANG Fupeng;SUN Dajun;Acoustic Science and Technology Laboratory,Harbin Engineering University;Key Laboratory of Marine Information Acquisition and Security ( Harbin Engineering University) ,Ministry of Industry and Information Technology;College of Underwater Acoustic Engineering,Harbin Engineering University;
  • 关键词:水声通信 ; 空间预综合技术 ; 宽带信号多普勒补偿 ; 自适应并行信道估计 ; 自适应RLS算法 ; 相位追踪 ; 判决反馈均衡器 ; 最小均方误差
  • 英文关键词:underwater acoustic communication;;spatial pre-combiner;;broadband Doppler compensator;;adaptive parallel channel estimation;;adaptive recursive least-squares algorithm;;phase tracking;;decision feedback equalizer;;minimum mean square error
  • 中文刊名:HEBG
  • 英文刊名:Journal of Harbin Engineering University
  • 机构:哈尔滨工程大学水声技术重点实验室;哈尔滨工程大学海洋信息获取与安全工信部重点实验室;哈尔滨工程大学水声工程学院;
  • 出版日期:2018-10-24 11:22
  • 出版单位:哈尔滨工程大学学报
  • 年:2019
  • 期:v.40;No.270
  • 基金:国家自然科学基金项目(61531012,61471138);; 国际科技合作专项基金项目(2013DFR20050);; 国防基础科研项目(B2420132004)
  • 语种:中文;
  • 页:HEBG201904001
  • 页数:8
  • CN:04
  • ISSN:23-1390/U
  • 分类号:5-12
摘要
针对宽带多普勒补偿的问题,本文提出了一种基于自适应宽带多普勒补偿技术的有效空时接收机技术,该接收机由自适应空间预综合器、多路插值器和基于信道估计的多路等效自适应判决反馈均衡器组成;本文提出的接收机结构在保证接收机性能的前提下,利用空间预综合器降低了接收机处理复杂度;采用联合自适应宽带多普勒补偿、自适应信道估计与均衡技术利用最小均方误差准则更新接收机系数,提高自适应接收机在移动条件下的稳健性。湖试试验验证了本文接收机的有效性,试验结果表明:本文提出的接收机结构可以有效补偿高速移动通信信号的宽带多普勒效应,实现高速移动平台间水声通信。
        To solve the problem induced by the broadband Doppler effects,this study proposes an effective spatial and temporal receiver based on adaptive broadband Doppler compensation technology. This device incorporates an adaptive spatial pre-combiner,multiplex interpolator,and channel estimation-based multichannel equivalent adaptive decision feedback equalizer. The proposed receiver structure reduces the processing complexity by using the spatial pre-combiner without performance loss. The joint adaptive broadband Doppler compensation,adaptive channel estimation,and equalization technologies are applied to ensure minimum mean-squared error performance of data detection and improve the robustness of the adaptive receiver in a mobile environment. Lake experimental results demonstrate the effectiveness and compensation capability of the broadband Doppler effect of high-speed mobile communication signal and achieve underwater acoustic communication between high-speed mobile platforms.
引文
[1]EGGEN T H,BAGGEROER A B,PREISIG J C. Communication over Doppler spread channels. Part I:Channel and receiver presentation[J]. IEEE journal of oceanic engineering,2001,25(1):62-71.
    [2]田坦.声呐技术[M]. 2版.哈尔滨:哈尔滨工程大学出版社,2010:23-27.
    [3]JOHNSON M,FREITAG L,STOJANOVIC M. Improved Doppler tracking and correction for underwater acoustic communications[C]//Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing. Munich,Germany,1997:575-578.
    [4]STOJANOVIC M,CATIPOVIC J A,PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE journal of oceanic engineering,1994,19(1):100-111.
    [5]STOJANOVIC M,CATIPOVIC J,PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The journal of the acoustical society of America,1993,94(3):1621-1631.
    [6]STOJANOVIC M,CATIPOVIC J A,PROAKIS J G. Reduced-complexity spatial and temporal processing of underwater acoustic communication signals[J]. The journal of the acoustical society of America,1995,98(2):961-972.
    [7]STOJANOVIC M. Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels[J]. Physical communication,2008,1(2):146-161.
    [8]SHARIF B S,NEASHAM J,HINTON O R,et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE journal of oceanic engineering,2000,25(1):52-61.
    [9]SHARIF B S,NEASHAM J,HINTON O R,et al. Adaptive Doppler compensation for coherent acoustic communication[J]. IEE proceedings-radar,sonar and navigation,2000,147(5):239-246.
    [10]SHARIF B S,NEASHAM J,HINTON O R,et al. Closed loop Doppler tracking and compensation for non-stationary underwater platforms[C]//Proceedings of the OCEANS2000 MTS/IEEE Conference and Exhibition. Providence,RI,USA,2000,1:371-375.
    [11]SHAH C P,TSIMENIDIS C C,SHARIF B S,et al. EXIT chart analysis of BICM-ID based receiver for shallow underwater acoustic communications[C]//Proceedings of the2010 7th International Symposium on Wireless Communication System. York,UK,2010:6-10.
    [12]GOODFELLOW G M,NEASHAM J A,TSIMENIDIS C C,et al. High data rate acoustic link for Micro-ROVs,employing BICM-ID[C]//Proceedings of the 2012 Oceans-Yeosu. Yeosu,South Korea,2012:1-6.
    [13]SHAH C P,TSIMENIDIS C C,SHARIF B S,et al. Lowcomplexity iterative receiver structure for time-varying frequency-selective shallow underwater acoustic channels using BICM-ID:design and experimental results[J]. IEEE journal of oceanic engineering,2011,36(3):406-421.
    [14]PELEKANAKIS K,CHITRE M. Robust equalization of mobile underwater acoustic channels[J]. IEEE journal of oceanic engineering,2015,40(4):775-784.
    [15]PELEKANAKIS K,CHITRE M. Low-complexity subband equalization of mobile underwater acoustic channels[C]//Proceedings of the Oceans 2015-Genova. Genova,Italy,2015:1-8.
    [16]PELEKANAKIS K,CHITRE M. A channel-estimatebased decision feedback equalizer robust under impulsive noise[C]//Proceedings of the 2014 Underwater Communications and Networking. Sestri Levante,Italy,2014:1-5.
    [17]GOODFELLOW G M,NEASHAM J A,TSIMENIDIS C C,et al. Investigation of a full duplex acoustic link for a tetherless micro-ROV[C]//Proceedings of OCEANS2011 IEEE-Spain. Santander,Spain,2011:1-7.
    [18]PROAKIS J G. Digital communications[M]. 4th ed. New York:McGraw-Hill,2000.
    [19]HAYKIN S. Adaptive filter theory[M]. 4th ed. NJ:Prentice-Hall Inc.,2002.
    [20]PERRINE K A,NIEMAN K F,HENDERSON T L,et al.Doppler estimation and correction for shallow underwater acoustic communications[C]//Proceedings of the 2010Conference Record of the Forty Fourth Asilomar Conference on Signals,Systems and Computers. Pacific Grove,CA,USA,2010:746-750.
    [21]PERRINE K A,NIEMAN K F,LENT K H,et al. The university of texas at austin applied research laboratories Nov. 2009 five-element acoustic underwater dataset[EB/OL].[2017-02-16]. http://users. ece. utexas. edu/~bevans/projects/underwater/datasets/.
    [22]Lower Colorado River Authority.“Historical Lake Levels:Highland Lakes”[EB/OL]. http://www. lcra. org/water/conditions/historical.html.
    [23]NIEMAN K F,PERRINE K A,LENT K H,et al. Multistage and sparse equalizer design for communication systems in reverberant underwater channels[C]//Proceedings of 2010 IEEE Workshop on Signal Processing Systems. San Francisco,CA,USA,2010:374-379.
    [24]韩笑,生雪莉,殷敬伟,等.基于双向判决反馈均衡器的水声通信海试试验研究[J].兵工学报,2016,37(3):553-558.HAN Xiao,SHENG Xueli,YIN Jingwei,et al. Experimental demonstration of underwater acoustic communication based on bidirectional decision feedback equalizer[J]. Acta armamentarii,2016,37(3):553-558.
    [25]乔钢,王巍,刘凇佐,等.改进的多输入多输出正交频分复用水声通信判决反馈信道估计算法[J].声学学报,2016,41(1):95-104QIAO Gang,WANG Wei,LIU Songzuo,et al. An improved decision feedback channel estimation algorithm for multiple-output orthogonal frequency division multiplexing underwater acoustic communication[J]. Acta acustica,2016,41(1):95-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700