用户名: 密码: 验证码:
高含硫天然气脱酸气装置提效降耗优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Efficiency improvement, consumption reduction and optimization of high-sulfur natural gas sweetening units
  • 作者:商剑峰 ; 邱敏 ; 姬忠礼
  • 英文作者:Shang Jianfeng;Qiu Min;Ji Zhongli;Puguang Branch,Sinopec Zhongyuan Oilfield Company;College of Mechanical and Transportation Engineering, China University of Petroleum;
  • 关键词:高含硫天然气 ; 脱酸气装置 ; 过程稳态模型 ; MDEA溶液 ; 参数优化 ; 热力学分析 ; 净化气收率 ; 能耗优化
  • 英文关键词:High-sulfur natural gas;;Gas sweetening unit;;Process steady-state simulation model;;MDEA solution;;Parameter optimization;;Thermodynamic analysis;;Yield of purified gas;;Energy consumption optimization
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:中国石化中原油田普光分公司;中国石油大学(北京)机械与储运工程学院;
  • 出版日期:2019-02-26 16:12
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.304
  • 基金:国家科技重大专项“高含硫气田集输净化系统安全高效运行技术”(编号:2016ZX05017-004)
  • 语种:中文;
  • 页:TRQG201902019
  • 页数:9
  • CN:02
  • ISSN:51-1179/TE
  • 分类号:108-116
摘要
为了提高高含硫天然气脱酸气装置的净化气产量并降低净化过程的综合能耗,依据中国石化普光天然气净化厂脱酸气装置的现场运行数据,采用ProMax建立了相应的工艺仿真模型,针对主要操作参数包括甲基二乙醇胺(MDEA)溶液的循环量,浓度和进入一、二级吸收塔的温度等开展灵敏度分析与优化研究,并结合现场实际,在优化工况下,分析原料气负荷降低、压力降低及H——2S含量升高对净化气气质与收率的影响规律。研究结果表明:①降低MDEA溶液循环量、浓度以及进塔温度可提高胺液吸收的选择性,有利于提高净化气的收率,其中MDEA溶液循环量是影响脱酸气装置综合能耗的主要因素;②当原料气负荷、压力以及H2S含量波动时,在优化工况下能够满足高含硫天然气的净化要求;③在低负荷下可通过减少再生蒸汽量和调整胺液进二级吸收塔位置实现节能;④H2S含量每增加1%,需将MDEA溶液循环量提高约20×10~3 kg/h;⑤经过参数优化,在满负荷工况下净化气收率可以提高0.5%,综合能耗降低19.1%。
        To increase purified gas production and reduce the comprehensive energy consumption of high-sulfur natural gas sweetening units, we established a process simulation model using the ProMax, based on the field operation data of a gas sweetening unit in the Sinopec Puguang Natural Gas Purification Plant. Then, sensitivity analysis and optimization study were carried out on the main operating parameters, including circulation rates, the concentrations and the inlet temperatures of primary and secondary absorption towers of MDEA(methyldiethanolamine) solutions. Finally, the effects of feed gas load reduction and pressure reduction and H_2S content increase on the quality and yield rates of purified gas were analyzed under the optimized operating conditions, combined with the actual field situations.And the following research results were obtained. First, the absorption selectivity of MDEA solutions can be improved by decreasing the circulation rates, concentrations and inlet temperatures of MDEA solutions, which is favorable for the increase of the yield rates of purified gas. Specifically, the circulation rate of MDEA solution is the main factor influencing the comprehensive energy consumption of a high-sulfur natural gas sweetening unit. Second, when the flow rate, pressure and H_2S content of feed gas fluctuate, the purification requirements can be satisfied under the optimized operating conditions. Third, energy conservation under low flow rates of feed gas can be achieved by reducing the flow rates of regenerated steam and adjusting the position of MDEA solutions entering the secondary absorption tower. Fourth, as H_2S content is increased by 1%, it is necessary to increase the circulation rate of MDEA solution by about 20×10~3 kg/h.Fifth, after parameter optimization, the yield rate of purified gas is increased by 0.5% and the comprehensive energy consumption is reduced by 19.1% under the operating condition of full load.
引文
[1]王建宏,于鑫萍,詹敏述,许波,朱玲,王亚飞.[bmim]OH和[A336][FeCl4]混合离子液体氧化吸收硫化氢[J].天然气工业,2018,38(7):100-107.Wang Jianhong,Yu Xinping,Zhan Minshu,Xu Bo,Zhu Ling&Wang Yafei.Oxidation absorption of H2S by[bmim]OH and[A336][FeCl4]mixed ionic liquid[J].Natural Gas Industry,2018,38(7):100-107.
    [2]王开岳.天然气净化工艺[M].北京:石油工业出版社,2005.Wang Kaiyue.Natural gas purification process[M].Beijing:Petroleum Industry Press,2005.
    [3]李奇.高含硫天然气净化装置用能分析与优化[D].北京:中国石油大学,2012.Li Qi.Energy analysis and optimization for high sour natural gas purification plant[D].Beijing:China University of Petroleum,2012.
    [4]胡世鹏.高含硫天然气净化装置工艺建模与参数优化[D].北京:中国石油大学,2013.Hu Shipeng.Process modeling and parameter optimization of high-sulfur natural gas purification plant[D].Beijing:China University of Petroleum,2013.
    [5]刘文君,余姣,马向伟,龚树鹏.影响硫磺回收装置长周期运行因素分析[J].石油与天然气化工,2017,46(1):27-33.Liu Wenjun,Yu Jiao,Ma Xiangwei&Gong Shupeng.Structure design and heat transfer performance simulation for heat exchanger in large scale LNG plant[J].Chemical Engineering of Oil&Gas,2017,46(1):27-33.
    [6]王尔珍,江伟平,范远,韩福庆,杨银银.长庆油田第四天然气净化厂450×104m3/d净化装置运行评价[J].石油与天然气化工,2015,44(5):21-27.Wang Erzhen,Jiang Weiping,Fan Yuan,Han Fuqing&Yang Yinyin.Operation evaluation of 4.5×106 m3/d purification unit in the Fourth Natural Gas Purification Plant of Changqing Oilfield[J].Chemical Engineering of Oil&Gas,2015,44(5):21-27.
    [7]Robert NM,Gilbert TM&Mahmud AR.Reactions of carbon dioxide and hydrogen sulfide with some alkanolamines[J].Industrial and Engineering Chemistry Research,1987,26(1):27-31.
    [8]Jassim MS.Sensitivity analyses and optimization of a gas sweetening plant for hydrogen sulfide and carbon dioxide capture using methyldiethanolamine solutions[J].Journal of Natural Gas Science and Engineering.2016,36(1):175-183.
    [9]Dara S&Berrouk AS.Computer-based optimization of acid gas removal unit using modified CO2 absorption kinetic models[J].International Journal of Greenhouse Gas Control,2017,59:172-183.
    [10]Cho H,Binns M,Min KJ&Kim JK.Automated process design of acid gas removal units in natural gas processing[J].Computers&Chemical Engineering,2015,83:97-109.
    [11]Behroozsarand A&Zamaniyan A.Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process[J].Journal of Natural Gas Chemistry,2011,20(1):99-109.
    [12]Salooki MK,Abedini R,Adib H&Koolivand H.Design of neural network for manipulating gas refinery sweetening regenerator column outputs[J].Separation and Purification Technology,2011,82(44):1-9.
    [13]Qiu K,Shang JF,Ozturk M,Li TF,Chen SK,Zhang LY,et al.Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening[J].Journal of Natural Gas Science and Engineering,2014,21(21):379-385.
    [14]Al-Lagtah NMA,Al-Habsi S&Onaizi SA.Optimization and performance improvement of Lekhwair Natural Gas Sweetening Plant using Aspen HYSYS[J].Journal of Natural Gas Science and Engineering,2015,26:367-381.
    [15]邓骥.某天然气脱硫装置适应性分析与动态特性研究[D].成都:西南石油大学,2015.Deng Ji.Adaptability analysis and dynamic characteristics study of a natural gas desulfurization plant[D].Chengdu:Southwest Petroleum University,2015.
    [16]邱奎,吴基荣,雷文权,梁建伟,邱正阳,何柏.高含硫天然气脱硫装置操作条件的优化[J].石油化工,2013,42(2):166-174.Qiu Kui,Wu Jirong,Lei Wenquan,Liang Jianwei,Qiu Zhengyang&He Bai.Optimization of operating conditions of high-sulfur gas sweetening unit[J].Petrochemical Technology,2013,42(2):166-174.
    [17]Bryan Research&Engineering LLC.Acid gas removal[EB/OL].(2018-11-13).https://www.bre.com/ProMax-Main.aspx,2018.
    [18]唐浠,瞿杨,陈庭库,侯光远,张云光.天然气净化厂MDEA再生系统优化运行探讨[J].石油与天然气化工,2014,43(5):492-496.Tang Xi,Qu Yang,Chen Tingku,Hou Guangyuan&Zhang Yunguang.Optimal operation of MDEA regeneration system in natural gas purification plant[J].Chemical Engineering of Oil&Gas,2014,43(5):492-496.
    [19]中华人民共和国住房和城乡建设部.石油化工设计能耗计算标准:GB/T 50441[S].北京:中国计划出版社,2016.Ministry of Housing and Urban-Rural Development of the PRC.Standard for calculation of energy consumption in petrochemical engineering design:GB/T 50441[S].Beijing:China Planning Press,2016.
    [20]范峥,刘向迎,黄风林,李稳宏,乔玉龙,闫昭.天然气中酸性组分含量升高的脱硫系统优化研究[J].石油与天然气化工,2014,43(5):467-471.Fan Zheng,Liu Xiangying,Huang Fenglin,Li Wenhong,Qiao Yulong&Yan Zhao.Optimization of desulphurization system for increased acidic components content in natural gas[J].Chemical Engineering of Oil&Gas,2014,43(5):467-471.
    [21]张素娟,陈昌介,何金龙,温崇荣,许娟,朱荣海,等.低负荷条件下硫磺回收装置的运行优化[J].石油与天然气化工,2015,44(6):33-37.Zhang Sujuan,Chen Changjie,He Jinlong,Wen Chongrong,Xu Juan,Zhu Ronghai,et al.Operation optimizing of sulfur recovery unit under low load[J].Chemical Engineering of Oil&Gas,2015,44(6):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700