用户名: 密码: 验证码:
氮沉降和降雨变化对荒漠草原凋落物分解的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland
  • 作者:霍利霞 ; 红梅 ; 赵巴音那木拉 ; 高海燕 ; 叶贺
  • 英文作者:HUO Lixia;HONG Mei;ZHAO Bayinnamula;GAO Haiyan;YE He;Inner Mongolia Agricultural University;Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources;
  • 关键词:荒漠草原 ; 凋落物分解 ; 模拟氮沉降 ; 降雨变化
  • 英文关键词:desert grassland;;litter decomposition;;simulated nitrogen deposition;;rainfall change
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:内蒙古农业大学;内蒙古自治区土壤质量与养分资源重点实验室;
  • 出版日期:2018-12-21 16:38
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31560156)
  • 语种:中文;
  • 页:STXB201906028
  • 页数:8
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:266-273
摘要
以荒漠草原凋落物为研究对象,通过设置自然降雨(CK)、增雨30%(W)和减雨30%(R) 3种水分处理和0 (N0)、30(N30)、50 (N50)和100 kg hm~(-2) a~(-1)(N100)4种氮素(NH_4NO_3)水平处理,用分解袋法,研究内蒙古短花针茅荒漠草原短花针茅(Stipa breviflora)、冷蒿(Artemisia frigida)、无芒隐子草(Cleistogenes songorica)和木地肤(Kochia prostrata)凋落物分解过程,旨在阐明荒漠草原凋落物分解过程及其对氮沉降和降雨变化的响应特征,为荒漠草原生态系统物质循环过程响应气候变化研究提供基础数据。结果表明:1)经过270 d分解后,短花针茅、冷蒿、木地肤和无芒隐子草干物质残留率分别为69.95%—78.67%、68.89%—79.89%、64.68%—79.23%、66.89%—79.38%,分解速率为木地肤>无芒隐子草>冷蒿>短花针茅。2)氮沉降和降雨对短花针茅和冷蒿凋落物分解速率产生显著影响(P<0.05),其交互作用对这两种凋落物分解速率不显著(P>0.05)。氮沉降和降雨以及交互作用均对无芒隐子草和木地肤凋落物分解速率产生显著影响(P<0.05)。3)单一水分或氮素的添加均提高土壤微生物量碳氮含量,而水氮交互作用下更为显著。4)凋落物分解速率受生物及非生物因子的影响,相关分析表明:冷蒿、无芒隐子草、木地肤与土壤微生物量碳呈极显著正相关(P<0.01);冷蒿、木地肤、短花针茅与土壤微生物量氮呈极显著正相关(P<0.01);木地肤和短花针茅与土壤含水量呈极显著正相关(P<0.01);冷蒿、木地肤、短花针茅与地上生物量呈极显著正相关(P<0.01)。
        The objective of this study was to examine the effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland.Our treatments included three different rainfall patterns(an ambient control,-30% and +30%) and addition of four different levels of nitrogen(an ambient control, 30, 50, and 100 kg hm~(-2) a~(-1)).We used a litterbag method to investigate the litter decomposition process of three dominant species(Stipa breviflora, Artemisia frigida, and Cleistogenes songorica) and another common species(Kochia prostrata) in the context of changing nitrogen deposition levels and rainfall patterns in a desert grassland of Inner Mongolia.This study provides the basic data for research on response to climate change in the material cycle of desert grassland ecosystems.The results showed that: 1) After 270 days of decomposition, the dry matter contents of S. breviflora, A. frigida, K. prostrata,and C. songorica were 69.95%—78.67%, 68.89%—79.89%, 64.68%—79.23%,and 66.89%—79.38%,respectively.The rank of the decomposition rate was K. prostrata>C. songorica>A. frigida>S. breviflora. 2)Nitrogen deposition and rainfall significantly affected the decomposition rates of S. breviflora and A. frigida(P<0.05), but their interactive effects on litter decomposition rates were not significant(P>0.05).Nitrogen deposition,rainfall,and their interactions significantly influenced the decomposition rates of C. songorica and K. prostrata(P<0.05). 3)The addition of single moisture or nitrogen level increased the carbon and nitrogen contents of the microorganisms, and the interaction between moisture and nitrogen was more significant.4)The decomposition rate of litters was affected by biotic and abiotic factors.The correlation analysis showed that:A. frigida, C. songorica, and K. prostrata were significantly positively correlated with soil microbial carbon(P<0.01); A. frigida, K. prostrata, and S. breviflora were significantly positively correlated with soil microbial nitrogen(P<0.01); K. prostrata, and S. breviflora were significantly positively correlated with soil water content(P<0.01); and A. frigida, K. prostrata, and S. breviflora were significantly positively correlated with above-ground biomass(P<0.01).
引文
[1] Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z C,Freney J R,Martinelli L A,Seitzinger S P,Sutton M A.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions.Science,2008,320(5878):889- 892.
    [2] Carrera A L,Bertiller M B.Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.Journal of Environmental Management,2013,114:505- 511.
    [3] 朱金兆,刘建军,朱清科,吴钦孝.森林凋落物层水文生态功能研究.北京林业大学学报,2002,24(5- 6):30- 34.
    [4] Houghton J T,Jenkins G J,Ephraums J J.Climate Change:The IPCC Scientific Assessments.Cambridge:Cambridge University Press,1990.
    [5] 张金屯.全球气候变化对自然土壤碳、氮循环的影响.地理科学,1998,18(5):463- 471.
    [6] Semmartin M,Aguiar M R,Distel R A,Moretto A S,Ghersa C M.Litter quality and nutrient cycling affected by grazing-induced species replacements along aprecipitation gradient.Oikos,2004,107(1):148- 160.
    [7] 周世兴,黄从德,向元彬,韩博涵,肖永翔,唐剑东.模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响.应用生态学报,2016,27 (5):1368- 1374.
    [8] 魏子上,李慧燕,李科利,杨殿林,皇甫超河.模拟N沉降和埋土对黄顶菊凋落物分解及养分释放的影响.生态学杂志,2017,36 (9):2412- 2422.
    [9] 文海燕,傅华,郭丁.黄土高原典型草原优势植物凋落物分解及养分释放对氮添加的响应.生态学报,2017,37(6):2014- 2022.
    [10] 陈翔,周梅,魏江生,赵鹏武,李攀,乌云毕力格,秦可珍.模拟氮沉降对兴安落叶松林凋落物分解的影响.生态环境学报,2013,22(9):1496- 1503.
    [11] 黄强,黄从德.模拟干旱对华西雨屏区常绿阔叶林凋落物分解及其养分释放的影响.四川林勘设计,2015,(4):8- 13.
    [12] 刘尉,王丽华,刘林,符饶,吴小辉,黄从德.增加降水对四川干旱河谷区云南松人工林凋落叶分解的影响.西北农林科技大学学报:自然科学版,2017,45(2):88- 95.
    [13] Schuur E A G.The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests.Ecosystems,2001,4(3):259- 273.
    [14] 王新源,赵学勇,李玉霖,连杰,曲浩,岳祥飞.环境因素对干旱半干旱区凋落物分解的影响研究进展.应用生态学报,2013,24 (11):3300- 3310.
    [15] 宋飘,张乃莉,马克平,郭继勋.全球气候变暖对凋落物分解的影响.生态学报,2014,34(6):1327- 1339.
    [16] 鲍士旦.土壤农化分析.北京:中国农业出版社,2000.
    [17] 张海芳,李刚,宋晓龙,刘红梅,张静妮,杨殿林,赵树兰,多立安.内蒙古贝加尔针茅草原不同利用方式土壤微生物功能多样性.生态学杂志,2012,31(5):1143- 1149.
    [18] 周存宇.凋落物在森林生态系统中的作用及其研究进展.湖北农学院学报,2003,23 (2):140- 145.
    [19] Bardgett R D,Walker L R.Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation.Soil Biology and Biochemistry,2004,36(3):555- 559.
    [20] Knorr M,Frey S D,Curtis P S.Nitrogen additions and litter decomposition:a meta-analysis.Ecology,2005,86(12):3252- 3257.
    [21] Anderson J M,Hetherington S L.Temperature,nitrogen availability and mixture effects on the decomposition of heather[Callunavulgaris(L.) Hull] and bracken[Pteridiumaquilinum(L.) Kuhn] litters.Functional Ecology,1999,13(s1):116- 124.
    [22] 韩雪,王春梅,蔺照兰.模拟氮沉降对温带森林凋落物分解的影响.生态环境学报,2014,23(9):1503- 1508.
    [23] 莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报,2004,24(7):1413- 1420.
    [24] 李雪峰,韩士杰,张岩.降雨量变化对蒙古栎落叶分解过程的间接影响.应用生态学报,2007,18(2):261- 266.
    [25] Steinberger Y,Whitford W G.Decomposition process in Negev ecosystems.Oecologia,1988,75(1):61- 66.
    [26] Güsewell S,Gessner M O.N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms.Functional Ecology,2009,23(1):211- 219.
    [27] Yahdjian L,Sala O E,Austin A T.Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe.Ecosystems,2006,9(1):128- 141.
    [28] Milchunas D G,Lauenroth W K,Chapman P L,Kazempour M K.Effects of grazing,topography,and precipitation on the structure of a semiarid grassland.Vegetatio,1989,80(1):11- 23.
    [29] Cornelissen J H C,Van Bodegom P M,Aerts R,Callaghan T V,Van Logtestijn P S P,Alatalo J,Chapin F S,Gerdol R,Gudmundsson J,Gwynn-Jones D,Hartley A E,Hik D S,Hofgaard A,Jónsdóttir I S,Karlsson S,Klein J A,Laundre J,Magnusson B,Michelsen A,Molau U,Onipchenko V G,Quested H M,Sandvik S M,Schmidt I K,Shaver G R,Solheim B,Soudzilovskaia N A,Stenstr?m A,Tolvanen A,Totland?,Wada N,Welker J M,Zhao X Q,Team M O L.Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.Ecology Letters,2007,10(7):619- 627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700