用户名: 密码: 验证码:
3D打印在催化和吸附材料制备领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional printing for the preparation of catalyst and adsorbent
  • 作者:周昕瞳 ; 刘振星 ; 刘昌俊
  • 英文作者:ZHOU Xintong;LIU Zhenxing;LIU Changjun;School of Chemical Engineering,Tianjin University;
  • 关键词:3D打印 ; 增材制造 ; 催化剂 ; 吸附剂
  • 英文关键词:3D printing;;additive manufacturing;;catalyst;;adsorbent
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:天津大学化工学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21536008)
  • 语种:中文;
  • 页:HGJZ201901043
  • 页数:13
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:523-535
摘要
3D打印是一种快速成型技术,该技术在催化和吸附材料制备领域的应用目前已受到广泛重视。3D打印技术一方面能够拓展整体式催化/吸附材料的涵盖范围,实现材料的宏观结构优化和活性组分控制,同时有利于强化催化和吸附过程中的传质/传热过程,而且操作灵活,可靠性强,因此适于工业生产和实验室研究。本文介绍了催化/吸附材料制备过程中常见的几种3D打印技术,同时从打印策略和打印材料方面入手,综述了目前3D打印技术在催化和吸附领域的各项应用,并由此指出,目前3D打印技术可以将聚合物、碳材料、金属及金属氧化物、分子筛等材料纳入到整体式催化体系中,通过对材料结构和分布的控制对其催化和吸附性能进行影响,因此3D打印在催化和吸附材料制备领域的应用有着广阔的前景。同时指出材料微观结构控制、打印耗材及流程的标准化,以及以计算为依托的催化/吸附材料的整体式结构和活性位点分布控制是今后的研究重点。
        Three-dimensional(3D) printing is a rapid prototyping technique. The applications of 3D printing for the preparation of catalyst and adsorbent have recently received increasing attentions. 3D printing can extend the range of monolithic catalysts and adsorbents, optimize the structure design and theactive component distribution, which can enhance the mass and heat transfer during the catalyticreactions and adsorption processes. As a convenient and reliable modeling method, 3D printing is suitablefor both laboratory operations and industrial applications. In this review, a general overview of thecommonly available 3D printing methods is given for the preparation of catalysts and adsorbent. Recentworks on printing strategies and new materials for catalysis and adsorption are also discussed. Polymers,carbon, metals and metal oxides, zeolites and many other materials can be incorporated into monolithic catalytic system by the help of 3D printing. The catalytic and adsorption performances can be controlled by the structure and distribution of the materials. Therefore, 3D printing is a promising technology for the preparation of catalysts and adsorbents. It is also pointed out that future developments have been discussed including the microstructure control of the material, the standardization of printing feedstocks and processes, and the design of the structures and active component distributions.
引文
[1] ZHOU X T, LIU C J. Three-dimensional printing for catalyticapplications:current status and perspectives[J]. AdvancedFunctional Materials, 2017, 27(30):1701134.
    [2] RUIZ-MORALES J C, TARANCON A, CANALES-VAZQUEZ J,et al. Three dimensional printing of components and functionaldevices for energy and environmental applications[J]. Energy&Environmental Science, 2017, 10(4):846-859.
    [3] PARRA-CABRERA C, ACHILLE C, KUHN S, et al. 3D printingin chemical engineering and catalytic technology:structuredcatalysts, mixers and reactors[J]. Chemical Society Reviews, 2017,47(1):209-230.
    [4]李宇,李永峰,吴青青,等.金属基体整体式催化剂的制备及在VOCs催化燃烧中的应用研究进展[J].化工进展, 2011, 30(4):759-765.LI Y, LI Y F, WU Q Q, et al. Preparation of monolithic catalystwith metallic substrate and application in catalytic combustion ofVOCs[J].Chemical Industry and Engineering Progress, 2011, 30(4):759-765.
    [5]王学海,吴昊,刘忠生.整体式Mn基低温脱硝催化剂研究[J].化工进展, 2015, 34(s1):127-130.WANG X H, WU H, LIU Z S. Performance of monolithic Mncatalyst for low temperature SCR[J]. Chemical Industry and Engineering Progress, 2015, 34(s1):127-130.
    [6] OZDEMIR S, ONSAN Z I, YILDIRIM R. Selective CO oxidationover monolithic Au/MgO/Al2O3catalysts[J]. Journal of ChemicalTechnology and Biotechnology, 2012, 87(1):58-64.
    [7] HORVATH J. Mastering 3D printing[M]. New York:Apress, 2014:3-5.
    [8] GIBSON I, ROSEN D W, STUCKER B. Additive manufacturingtechnologies[M]. New York:Springer, 2010:5-61.
    [9] TURNER B N, STRONG R, GOLD S A. A review of meltextrusion additive manufacturing processes:I. Process design andmodeling[J]. Rapid Prototyping Journal, 2014, 20(3):192-204.
    [10] JONES R, HAUFE P, SELLS E, et al. RepRap—the replicatingrapid prototyper[J]. Robotica, 2011, 29:177-191.
    [11] BOPARAI K S, SINGH R, SINGH H. Development of rapidtooling using fused deposition modeling:a review[J]. RapidPrototyping Journal, 2016, 22(2):281-299.
    [12] KALIA S, HALDORAI Y. Organic-inorganic hybrid nanomaterials[M]. Heidelberg:Springer, 2014:249-281.
    [13] HONG J I, WINBERG P, SCHADLER L S, et al. Dielectricproperties of zinc oxide/low density polyethylene nanocomposites[J]. Materials Letters, 2005, 59(4):473-476.
    [14] HUANG D K, ZHANG B Y, ZHANG Y B, et al. Electrochemicallyreduced graphene oxide multilayer films as metal-freeelectrocatalysts for oxygen reduction[J]. Journal of MaterialsChemistry A, 2013, 1(4):1415-1420.
    [15] SHIN S R, FARZAD R, TAMAYOL A, et al. A bioactive carbonnanotube-based Ink for printing 2D and 3D flexible electronics[J].Advanced Materials, 2016, 28(17):3280-3289.
    [16] WEI X J, LI D, JIANG W, et al. 3D printable graphene composite[J]. Scientific Reports, 2015, 5:11181.
    [17] ZHANG D, CHI B H, LI B W, et al. Fabrication of highlyconductive graphene flexible circuits by 3D printing[J]. SyntheticMetals, 2016, 217:79-86.
    [18] TORRADO PEREZ A R, ROBERSON D A, WICKER R B.Fracture surface analysis of 3D-printed tensile specimens of novelABS-based materials[J]. Journal of Failure Analysis andPrevention, 2014, 14(3):343-353.
    [19] SKORSKI M R, ESENTHER J M, AHMED Z, et al. The chemical,mechanical, and physical properties of 3D printed materialscomposed of TiO2-ABS nanocomposites[J]. Science andTechnology of Advanced Materials, 2016, 17(1):89-97.
    [20] CESARANO J, SEGALMAN R, CALVERT P. Robocastingprovides moldless fabrication fiom slurry deposition[J]. CeramicIndustry, 1998, 148(4):94-102.
    [21] ZHU C, HAN T Y J, DUOSS E B, et al. Highly compressible 3Dperiodic graphene aerogel microlattices[J]. Nature Communications,2015, 6:6962.
    [22] LI V C F, DUNN C K, ZHANG Z, et al. Direct ink write(DIW)3Dprinted cellulose nanocrystal aerogel structures[J]. ScientificReports, 2017, 7(1):8018.
    [23] YAN P L, BROWN E, SU Q, et al. 3D printing hierarchical silvernanowire aerogel with highly compressive resilience and tensileelongation through tunable poisson's ratio[J]. Small, 2017, 13(38):1701756.
    [24] PATAKY K, BRASCHLER T, NEGRO A, et al. Microdropprinting of hydrogel bioinks into 3D tissue-like geometries[J].Advanced Materials, 2012, 24(3):391-396.
    [25] HIGHLEY C B, RODELL C B, BURDICK J A. Direct 3D printingof shear-thinning hydrogels into self-healing hydrogels[J].Advanced Materials, 2015, 27(34):5075-5079.
    [26] SMAY J E, GRATSON G M, SHEPHERD R F, et al. Directedcolloidal assembly of 3D periodic structures[J]. AdvancedMaterials, 2002, 14(18):1279-1283.
    [27] LEWIS J A. Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State&Materials Science, 2002, 6(3):245-250.
    [28] THERRIAULT D, WHITE S R, LEWIS J A. Chaotic mixing inthree-dimensional microvascular networks fabricated by direct-write assembly[J]. Nature Materials, 2003, 2(4):265-271.
    [29] GRATSON G M, XU M J, LEWIS J A. Microperiodic structures-direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981):386.
    [30]王小锋,孙月花,彭超群,等.直写成型用悬浮液的设计[J].无机材料学报, 2015(11):1139-1147.WANG X F, SUN Y H, PENG C Q, et al. Suspensions designed fordirect ink writing[J].Journal of Inorganic Materials, 2015(11):1139-1147.
    [31] CHANNELL G M, MILLER K T, ZUKOSKI C F. Effects ofmicrostructure on the compressive yield stress[J]. AIChE Journal,2000, 46(1):72-78.
    [32] RAO R B, KRAFCIK K L, MORALES A M, et al. Microfabricateddeposition nozzles for direct-write assembly of three-dimensionalperiodic structures[J]. Advanced Materials, 2005, 17(3):289-293.
    [33] TUBIO C R, AZUAJE J, ESCALANTE L, et al. 3D printing of aheterogeneous copper-based catalyst[J]. Journal of Catalysis,2016, 334:110-115.
    [34] ZHANG J, XIAO P. 3D printing of photopolymers[J]. PolymerChemistry, 2018, 9(13):1530-1540.
    [35] HULL C W. Apparatus for production of three-dimensionalobjects by stereolithography:US4575330[P]. 1986-03-11.
    [36] FANTINO E, CHIAPPONE A, ROPPOLO I, et al. 3D printing ofconductive complex structures with in situ generation of silvernanoparticles[J]. Advanced Materials, 2016, 28(19):3712-3717.
    [37] CHIAPPONE A, FANTINO E, ROPPOLO I, et al. 3D printedPEG-based hybrid nanocomposites obtained by sol-gel technique[J]. ACS Applied Materials&Interfaces, 2016, 8(8):5627-5633.
    [38] KOTZ F, ARNOLD K, BAUER W, et al. Three-dimensionalprinting of transparent fused silica glass[J]. Nature, 2017, 544(7650):337-339.
    [39] ECKEL Z C, ZHOU C Y, MARTIN J H, et al. Additivemanufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268):58-62.
    [40] HALLORAN J W. Ceramic stereolithography:additivemanufacturing for ceramics by photopolymerization[J]. AnnualReview of Materials Research, 2016, 46:19-40.
    [41] MEZA L R, DAS S, GREER J R. Strong, lightweight, andrecoverable three-dimensional ceramic nanolattices[J]. Science,2014, 345(6202):1322-1326.
    [42] ESSA K, HASSANIN H, ATTALLAH M M, et al. Developmentand testing of an additively manufactured monolithic catalyst bedfor HTP thruster applications[J]. Applied Catalysis A:General,2017, 542:125-135.
    [43] AMBROSI A, MOO J G S, PUMERA M. Helical 3D-printed metalelectrodes as custom-shaped 3D platform for electrochemicaldevices[J]. Advanced Functional Materials, 2016, 26(5):698-703.
    [44] AVRIL A, HORNUNG C H, URBAN A, et al. Continuous flowhydrogenations using novel catalytic static mixers inside a tubularreactor[J]. Reaction Chemistry&Engineering, 2017, 2(2):180-188.
    [45]王虎.纳米改性光固化快速成型树脂性能的研究[D].青岛:青岛科技大学, 2016.WANG H. Study on the properties of UV-curing rapidprototyping resin modified by nano-materials[D]. Qingdao:Qingdao University of Science and Technology, 2016.
    [46] CASTLES F, ISAKOV D, LUI A, et al. Microwave dielectriccharacterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6:8.
    [47] LEE J H, KO K H, PARK B O. Electrical and optical properties ofZnO transparent conducting films by the sol-gel method[J].Journal of Crystal Growth, 2003, 247(1/2):119-125.
    [48] ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications[J].Chemical Reviews, 2008, 108(9):3893-3957.
    [49] DEMIR M M, CASTIGNOLLES P, AKBEY U, et al. In-situ bulk polymerization of dilute particle/MMA dispersions[J].Macromolecules, 2007, 40(12):4190-4198.
    [50] FOSTER C W, DOWN M P, ZHANG Y, et al. 3D printedgraphene based energy storage devices[J]. Scientific Reports,2017, 7:42233.
    [51] HWANG S, REYES E I, MOON K S, et al. Thermo-mechanicalcharacterization of metal/polymer composite filaments andprinting parameter study for fused deposition modeling in the 3Dprinting process[J]. Journal of Electronic Materials, 2015, 44(3):771-777.
    [52] ZHANG J H, ZHAO S C, ZHU M, et al. 3D-printed magneticFe3O4/MBG/PCL composite scaffolds with multifunctionality ofbone regeneration, local anticancer drug delivery and hyperthermia[J]. Journal of Materials Chemistry B, 2014, 2(43):7583-7595.
    [53] WU C T, FAN W, ZHOU Y H, et al. 3D-printing of highlyuniform CaSiO3ceramic scaffolds:preparation, characterizationand in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012,22(24):12288-12295.
    [54] WANG Z Y, WANG J J, LI M Y, et al. Three-dimensional printedacrylonitrile butadiene styrene framework coated with Cu-BTCmetal-organic frameworks for the removal of methylene blue[J].Scientific Reports, 2014, 4:5939.
    [55] SHI Z N, XU C, CHEN F, et al. Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green[J]. RSC Advances, 2017, 7(79):49947-49952.
    [56] YAN C Y, JI Z Y, MA S H, et al. 3D printing as feasible platformfor on-site building oil-skimmer for oil collection from spills[J].Advanced Materials Interfaces, 2016, 3(13):7.
    [57] LV J, GONG Z J, HE Z K, et al. 3D printing of a mechanicallydurable superhydrophobic porous membrane for oil-waterseparation[J]. Journal of Materials Chemistry A, 2017, 5(24):12435-12444.
    [58] MICHORCZYK P, HEDRZAK E, WEGRZYNIAK A. Preparationof monolithic catalysts using 3D printed templates for oxidativecoupling of methane[J]. Journal of Materials Chemistry A, 2016, 4(48):18753-18756.
    [59] LI Y, CHEN S, CAI X, et al. Rational design and preparation ofhierarchical monoliths through 3D printing for syngas methanation[J]. Journal of Materials Chemistry A, 2018, 6(11):5695-5702.
    [60] WAN Y, SHI Y F, ZHAO D Y. Supramolecular aggregates astemplates:ordered mesoporous polymers and carbons[J].Chemistry of Materials, 2008, 20(3):932-945.
    [61] CHANDRASEKARAN S, DUOSS E B, WORSLEY M A, et al. 3D printing of high performance cyanate ester thermoset polymers[J].Journal of Materials Chemistry A, 2018, 6(3):853-858.
    [62] LEWICKI J P, RODRIGUEZ J N, ZHU C, et al. 3D-printing ofmeso-structurally ordered carbon fiber/polymer composites withunprecedented orthotropic physical properties[J]. ScientificReports, 2017, 7:43401.
    [63] YANG K, GRANT J C, LAMEY P, et al. Diels-Alder reversiblethermoset 3D printing:isotropic thermoset polymers via fusedfilament fabrication[J]. Advanced Functional Materials, 2017, 27(24):11.
    [64] TAMON H, ISHIZAKA H, YAMAMOTO T, et al. Influence offreeze-drying conditions on the mesoporosity of organic gels ascarbon precursors[J]. Carbon, 2000, 38(7):1099-1105.
    [65] ELKHATAT A M, AL-MUHTASEB S A. Advances in tailoringresorcinol-formaldehyde organic and carbon gels[J]. AdvancedMaterials, 2011, 23(26):2887-2903.
    [66] ZHU C, LIU T, QIAN F, et al. Supercapacitors based on 3Dhierarchical graphene aerogels with periodic macropores[J]. NanoLetters, 2016, 16(6):3448-3456.
    [67] NATHAN-WALLESER T, LAZAR I M, FABRITIUS M, et al. 3Dmicro-extrusion of graphene-based active electrodes:towardshigh-rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials, 2014, 24(29):4706-4716.
    [68] CHI K, ZHANG Z Y, XI J B, et al. Freestanding graphene papersupported three-dimensional porous graphene-polyanilinenanoconnposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials&Interfaces,2014, 6(18):16312-16319.
    [69] LAM C X F, MO X M, TEOH S H, et al. Scaffold developmentusing 3D printing with a starch-based polymer[J]. MaterialsScience&Engineering C-Biomimetic and SupramolecularSystems, 2002, 20(1/2):49-56.
    [70] RAMBO C R, TRAVITZKY N, ZIMMERMANN K, et al.Synthesis of TiC/Ti-Cu composites by pressureless reactiveinfiltration of TiCu alloy into carbon preforms fabricated by 3D-printing[J]. Materials Letters, 2005, 59(8/9):1028-1031.
    [71] LIU Z B, ZHANG M, BHANDARI B, et al. Impact of rheologicalproperties of mashed potatoes on 3D printing[J]. Journal of FoodEngineering, 2018, 220:76-82.
    [72] ZHOU X T, LIU C J. Three-dimensional printing of porous carbonstructures with tailorable pore sizes[J]. Catalysis Today, 2018.DOI:10.1016/j.cattod.2018.05.044.
    [73] KONAROVA M, ASLAM W, GE L, et al. Enabling processintensification by 3D printing of catalytic structures[J]. Chem. Cat.Chem., 2017, 9(21):4132-4138.
    [74] FRAZIER W E. Metal additive manufacturing:a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928.
    [75] FARAHANI R D, DUBE M, THERRIAULT D. Three-dimensional printing of multifunctional nanocomposites:manufacturing techniques and applications[J]. AdvancedMaterials, 2016, 28(28):5794-5821.
    [76] LIU X, JERVIS R, MAHER R C, et al. 3D-printed structuralpseudocapacitors[J]. Advanced Materials Technologies, 2016, 1(9):1600167.
    [77] CHEN L, TANG X, XIE P, et al. 3D printing of artificial leaf withtunable hierarchical porosity for CO2photoreduction[J]. Chemistryof Materials, 2018, 30(3):799-806.
    [78] AZUAJE J, TUBIO C R, ESCALANTE L, et al. An efficient andrecyclable 3D printedαAl2O3catalyst for the multicomponentassembly of bioactive heterocycles[J]. Applied Catalysis A,General, 2017, 530:203-210.
    [79] TUBIO C R, GUITIAN F, GIL A. Fabrication of ZnO periodicstructures by 3D printing[J]. Journal of the European CeramicSociety, 2016, 36(14):3409-3415.
    [80] TAYLOR S L, JAKUS A E, SHAH R N, et al. Iron and nickelcellular structures by sintering of 3D-printed oxide or metallicparticle inks[J]. Advanced Engineering Materials, 2017, 19(11):8.
    [81] THAKKAR H V, EASTMAN S, HAJARI A, et al. 3D-printedzeolite monoliths for CO2removal from enclosed environments[J].ACS Applied Materials&Interfaces, 2016, 8(41):27753-27761.
    [82] COUCK S, LEFEVERE J, MULLENS S, et al. CO2, CH4and N2separation with a 3DFD-printed ZSM-5 monolith[J]. ChemicalEngineering Journal, 2017, 308:719-726.
    [83] COUCK S, COUSIN-SAINT-REMI J, VAN DER PERRE S, et al.3D-printed SAPO-34 monoliths for gas separation[J].Microporous and Mesoporous Materials, 2018, 255:185-191.
    [84] THAKKAR H, EASTMAN S, AL-MAMOORI A, et al.Formulation of aminosilica adsorbents into 3D-printed monolithsand evaluation of their CO2capture performance[J]. ACS AppliedMaterials&Interfaces, 2017, 9(8):7489-7498.
    [85] LEFEVERE J, GYSEN M, MULLENS S, et al. The benefit ofdesign of support architectures for zeolite coated structuredcatalysts for methanol-to-olefin conversion[J]. Catalysis Today,2013, 216:18-23.
    [86] DIAZ-MARTA A S, TUBIO C R, CARBAJALES C, et al. Three-dimensional printing in catalysis:combining 3D heterogeneouscopper and palladium catalysts for multicatalytic multicomponentreactions[J]. ACS Catalysis, 2018, 8(1):392-404.
    [87] AVILA P, MONTES M, MIRO E E. Monolithic reactors forenvironmental applications—A review on preparation technologies[J]. Chemical Engineering Journal, 2005, 109(1/2/3):11-36.-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700