用户名: 密码: 验证码:
Nb和Nb-Ti系微合金耐候钢的连续冷却转变与形变热模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Continuous cooling transformation and thermal-mechanical simulation of Nb and Nb-Ti microalloy weathering steels
  • 作者:柳美玲 ; 汤亨强 ; 朱国辉
  • 英文作者:Liu Meiling;Tang Hengqiang;Zhu Guohui;Industrial and Co mmercial College,Anhui University of Technology;Technology Center,Ma Gang Steel;School of Metallurgical Engineering,Anhui University of Technology;
  • 关键词:微合金耐候钢 ; 连续冷却转变 ; 形变热模拟 ; 低温韧性 ; 硬度
  • 英文关键词:microalloying weathering steel;;continuous cooling transformation;;thermal-mechanical simulation;;low temperature toughness;;hardness
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:安徽工业大学工商学院;马钢集团技术中心;安徽工业大学冶金学院;
  • 出版日期:2019-07-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.503
  • 基金:2018年度高校优秀青年人才支持计划(gxyq2018155)
  • 语种:中文;
  • 页:JSRC201907033
  • 页数:6
  • CN:07
  • ISSN:11-1860/TG
  • 分类号:145-150
摘要
在Gleeble-3500热模拟试验机上对Nb和Nb-Ti微合金耐候钢进行连续冷却转变与形变热模拟试验,观察比较两类钢显微组织、析出相与力学性能;利用TEM观察第二相粒子析出物状态。结果表明:随着冷却速度的提高,组织将由珠光体向贝氏体到马氏体转变。当冷却速度达到5℃/s时Nb微合金钢就发生马氏体转变;而Nb-Ti微合金钢在10℃/s才获得马氏体组织,即马氏体转变延迟。形变热模拟试验中,Nb-Ti微合金钢获得的铁素体更加细小,提高了材料的低温韧性;在TEM观察下,Nb C和(Nb、Ti) C粒子在晶内与晶界上是随机分布的,其中Nb C粒子尺寸大约20 nm,体积分数约为0. 6%,(Nb、Ti) C粒子尺寸大约75 nm,体积分数约为1. 33%; Nb-Ti微合金钢的硬度比Nb微合金钢的硬度值更高,说明粒子体积分数比粒子尺寸对硬度的贡献更大。
        The continuous cooling transformation and thermal-mechanical simulation of Nb and Nb-Ti microalloying steels were conducted on a Gleeble-3500 thermal simulator,and the microstructure,precipitation and mechanical properties of the two steels were observed and compared. The secondary phase particle precipitates were observed by TEM. The results show that the microstructure changes from pearlite to bainite to martensite as the cooling rate increases. The martensite transformation occurs in the Nb microalloy steel when the cooling rate reaches 5 ℃/s,while that occurs in the Nb-Ti microalloy steel at 10 ℃/s,i. e.,the martensite transformation is delayed. In the thermalmechanical simulation test,the ferrite size obtained in the Nb-Ti steel is smaller and the low temperature toughness of the material is improved. Under TEM observation,Nb C and( Nb,Ti) C particles are randomly distributed within the grains and at grain boundaries,where the Nb C particle size is 20 nm,the volume fraction is 0. 6%,and the( Nb,Ti) C particle size is 75 nm with the volume fraction being1. 33%. The hardness of the Nb-Ti microalloying steel is higher than that of the Nb microalloying steel,which indicates that the volume fraction contributes more to hardness than the particle size.
引文
[1]张可,雍岐龙,孙新军,等.卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J].金属学报,2012,52(5):529-537.Zhang Ke,Yong Qilong,Sun Xinjun,et al.Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo composite microalloyed ultra-high strength steel[J].Acta Metallurgica Sinica,2012,52(5):529-537.
    [2]Mohamed S,Heinz P.Influence of hot working parameters on microstructure evolution,tensile behavior and strain aging potential of bainitic pipeline steel[J].Materials and Design,2015,88:759-773.
    [4]Arif I A M,Talarl M K,Anis A L,et al.Grain refinement,microstructural and hardness investigation of C added Ti-15-3 alloys prepared by argon arc melting[J].Transactions of the Indian Institute of Metals,2017,70(3):1-5.
    [5]狄国标,刘振宇,郝利强,等.海洋平台用钢的生产现状及发展趋势[J].机械工程材料,2008,32(8):1-3.Di Guobiao,Liu Zhenyu,Hao Liqiang,et al.Production status and development trend of steel for offshore platform[J].Mechanical Engineering Materials,2008,32(8):1-3.
    [6]Cheng Shixia,Zhang Xiaoyong,Zhang Jianxun,et al.Effect of coiling temperature on microstructure and properties of X100 pipeline steel[J].Materials Science and Engineering A,2016,666:156-164.
    [7]陈颜堂,郭爱民,李平和.Nb-Ti微合金化超低碳低合金高强度钢中第二相的析出行为[J].金属热处理,2007,32(9):51-54.Chen Yantang,Guo Aimin,Li Pinghe.Nitride and carbonitride precipitation behavior in a Nb-Ti microalloyed extra low carbon HSLAsteel[J].Heat Treatment of Metals,2007,32(9):51-54.
    [8]程慧静,王福明,潘钊彬,等.Nb-V复合微合金化中碳非调质钢的连续冷却转变[J].材料热处理学报,2009,30(5):44-49.Cheng Huijing,Wang Fuming,Pan Zhaibin,et al.Continuous cooling transformation of Nb-V microalloyed medium carbon non-quenched and tempered steel[J].Transactions of Material and Heat Treatment,2009,30(5):44-49.
    [9]付俊岩,王伟哲.铌科学与技术[M].北京:冶金工业出版社,2003.Fu Junyan,Wang Weizhe.Niobium Science and Technology[M].Beijing:Metallurgical Industry Press,2003.
    [10]牛延龙,李远征,刘清友,等.X90管线钢的组织和性能特征[J].金属热处理,2018,43(10):143-150.Niu Yanlong,Li Yuanzheng,Liu Qingyou,et al.Microstructure and properties of X90 pipeline steel[J].Heat Treatment of Metals,2018,43(10):143-150.
    [11]衣海龙,徐洋,徐兆国,等.低成本780 MPa级热轧高强钢的组织与性能[J].机械工程材料,2010,34(12):37-39.Yi Hailong,Xu Yang,Xu Zhaoguo,et al.Microstructure and properties of low cost 780 MPa hot-rolled high-strength steel[J].Materials for Mechanical Engineering,2010,34(12):37-39.
    [12]Zhang Yaran,Cai Qi,Liu Yongchang,et al.Evaluation of precipitation hardening in Ti C-reinforced Ti2Al Nb-based alloys[J].International Journal of Minerals Metallurgy and Materials,2018,25(4):453-458.
    [13]刘晓东.基于Nb-Mo-Ti成分大厚度高韧性管线钢工艺研究[J].金属热处理,2017,42(9):149-154.Liu Xiaodong.Process research of heavy section and high toughness pipeline steel based on Nb-Mo-Ti compositions[J].Heat Treatment of Metals,2017,42(9):149-154.
    [14]唐兴昌,王向飞,张志坚.Nb、Ti微合金化低碳贝氏体高强钢组织性能及再结晶行为的研究[J].热加工工艺,2018,47(8):78-80.Tang Xingchang,Wang Xiangfei,Zhang Zhijian.Research on structure,properties and recrystallization behavior of Nb and Ti microalloyed low carbon bainite high strength steel[J].Hot Working Technology,2018,47(8):78-80.
    [15]Craver A J,He K,Garvie L A J,et al.Complex heterogeneous precipitation in Ti-Nb microalloyed Al-killed HSLA steel-Ⅰ,(Ti,Nb)(C,N)particles[J].Acta Materialia,2000,48(5):3857-3868.
    [16]Roger J,Gardiola B,Andrieux J,et al.Synthesis of Ti matrix composites reinforced with Ti C particles:Thermodynamic equilibrium and change in micro-structure[J].Journal of Materials Science,2017,52(7):4129-4141.
    [17]李晓林,肖宝亮,崔阳,等.Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J].材料导报,2017,31(1):105-111.Li Xiaolin,Xiao Baoliang,Cui Yang,et al.Solid solution and reprecipitation of carbonitride in Nb,Ti-microalloyed steel[J].Material Review,2017,31(1):105-111.
    [18]王有铭,李曼云.钢材的控制轧制和控制冷却[M].2版.北京:冶金工业出版社,2018.Wang Youming,Li Manyun.Control Rolling and Control Cooling of Steel[M].2nd Edition.Beijing:Metallurgical Industry Press,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700