用户名: 密码: 验证码:
不同氮水平下功能叶片数量和位置对水稻产量性状的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the number and position of functional leaves on yield traits of rice under different nitrogen levels
  • 作者:田广丽 ; 孔亚丽 ; 张瑞卿 ; 周新国 ; 郭世伟
  • 英文作者:TIAN Guang-li;KONG Ya-li;ZHANG Rui-qin;ZHOU Xin-guo;GUO Shi-wei;College of Resources and Environmental Sciences, Nanjing Agricultural University;Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences &Ministry of Water Resources;Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd.Xincao Branch;
  • 关键词:水稻 ; 氮水平 ; 功能叶片 ; 叶位 ; 产量构成
  • 英文关键词:rice;;nitrogen level;;functional leaf;;leaf position;;yield composition
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:南京农业大学资源与环境科学学院;中国农业科学院农田灌溉研究所;江苏省农垦农业发展股份有限公司新曹分公司;
  • 出版日期:2019-05-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.128
  • 基金:公益性行业(农业)科研专项项目(201503122-05)资助
  • 语种:中文;
  • 页:ZWYF201905003
  • 页数:8
  • CN:05
  • ISSN:11-3996/S
  • 分类号:27-34
摘要
[目的]功能叶片对水稻拔节期后的养分运转和积累起着举足轻重的作用。本文探讨了不同氮水平下,不同数量和位置的功能叶片对水稻产量构成的影响,为水稻生产提供更加科学、合理的指导。[方法]以在江苏省沿江及苏南地区适宜种植的早熟晚粳稻'镇稻11号'为供试材料。田间试验主处理设置N0、90、180、270、360 kg/hm~2 5个水平(即NO、N90、N180、N270、N360处理),副处理设置高栽培密度(32.5×10~4hill/hm~2, HD)和低密度(25.5×10~4 hill/hm~2, LD)两个水平。于水稻开花齐穗期,每小区选择大小基本一致的单茎穗,挂上标签,分别修剪倒1叶(-T1)、倒2叶(-T2)、倒3叶(-T3)、倒1+2叶(-T1+2)、倒1+3叶(-T1+3)、倒2+3叶(-T2+3)、倒1+2+3叶(-T1+2+3)和不剪除(-T0,对照),组成8个叶位修剪处理。水稻成熟期选取具代表性的植株用于测定产量组成;同时记录各叶位修剪处理穗子的结实率及其强、弱势粒的千粒重。[结果]与NO相比,施氮能显著增加稻穗长度和穗梗数,各氮水平处理间穗长、穗梗数及单个稻穗重量无显著差异。低(N90)、中(N180)、高(N270)三个氮水平下从穗顶端至穗基部随梗位的增加,每梗粒数均呈先增加后下降的趋势,而氮水平对梗粒数没有显著影响。氮水平相同时,两栽培密度下叶片修剪的试验结果一致,均表现为:单独减去倒1、倒2、倒3叶时对单穗重无显著影响;同时减去上3叶中任意2片叶时,单穗重下降5.5%~10.3%;将上3片叶同时减去时单穗重下降24.6%;相同修剪处理下,单穗重的下降比例随氮水平的增加而增加,这表明了氮水平对穗部性状影响的稳定性。通过广义线性模型的分析表明,不同位叶剪处理下,解释单穗重下降比例的模型性能依次为结实率(SP)>SP和强势粒千粒重(S)组合模型>SP和弱势粒千粒重(I)组合模型>SP、S、I三者组合模型>I、S组合模型。[结论]氮水平通过影响稻穗长度、穗梗数、穗梗粒数、结实率和千粒重,进而影响单个穗重。花后稻穗功能叶片越少,单穗重下降越大;施氮水平越高,下降越严重。当功能叶片数量一定时,叶片位置不影响单穗重。花后功能叶依次通过影响结实率、结实率和强势粒千粒重、结实率和弱势粒千粒重、强势粒千粒重和弱势粒千粒重来影响稻穗的重量。
        [Objectives]The functional leaves play key roles for the nutrient translocation from vegetative organs to spikes of rice. The paper studied the effects of different number and positions of functional leaves on the panicle characteristics under different nitrogen levels, so as to provide more scientific and reasonable guidance for the actual production of rice.[Methods ]Taking early-maturing late japonicas 'Zhendao 11' as material,a field experiment was conducted in Jiangsu Province. Five nitrogen levels(N 0, 90, 180, 270, 360 kg/hm2) were set up as the main treatments of N0, N90, N180, N270 and N360, and high and low transplanting densities of 32.5 × 10~4 and 25.5 × 10~4 hill/hm~2 as the secondary treatments(HD and LD). At heading stage of rice, panicles with the same size were selected and labeled in each plot. From the panicle downward, the leaves were pruned respectively as:the last 1 st(-T), the last 2 nd(-T2), the last 3 rd(-T3), the last lst+2 nd(-T1+2), the last 1 st+3 rd(-T1+3), the last 2 nd+3 rd(-T2+3), the last three(-T1+2+3), and non-pruned(-T0, control), totally 8 pruning treatments. At maturity stage,representative plants were selected to measure the yield components. The seed setting percentage and the superior1000-grains-weight and the inferior 1000-grains-weight were recorded in each panicles under each pruning treatments.[Results ]Compared with N0, N application significantly increased the pantcle length and the number of per panicle, but not in panicle length, panicle branch number and weight per panicle among different nitrogen levels(N0, 90,180, 270, 360 kg/hm~2). Under N90, N180 and N270, with the increasing of the stalk position from the top to the base of panicle, the number of grains per branch increased first and then decreased.The results of leaf pruning under the two cultivation densities were similar, indicating the stability of the effect of N level on panicle traits. There was no significant effect on the weight of single spike when the last 1 st, 2 nd and3 rd leaves was pruned alone, while that was decreased by 5.5%-10.3% with any 2 or 3 leaves pruned together,and when the three leaves were all pruned, that was decreased by 24.6%. Under the same pruning treatment, the decline ratio of weight per panicle increased with the increase of nitrogen level. The analysis of the generalized linear model showed that under different leaf position pruning, the model performance to explain the falling ratio of weight per panicle is: seed setting percentage(SP) > SP, 1000-grain weight of superior spikelets(S) and 1000-grain weight of inferior spikelets(I),in which SP,S,I composite model>I,S composite model.[Conclusions ]The nitrogen level affects the spike length, number of branches per panicle, number of grains per branch, seed setting percentage and 1000-grain weight, and then the weight of per panicle. Fewer functional leaves after anthesis leads to lower panicle weight, and the lower the higher the nitrogen level. When the number of functional leaves is constant, leaf position does not affect the single spike weight. The position of functional leaves after anthesis affect the single panicle weight of rice by influencing SP,SP and S, SP and I, and S in turn.
引文
[1]董桂春,李进前,董燕萍,等.产量构成因素及穗部性状对籼稻品种库容的影响[J].中国水稻科学,2009, 23(5):523-528.Dong G C, Li J Q, Dong Y P, et al. Effects of yield components and panicle traits on sink potential in conventional indica rice[J]. Chinese Journal of Rice Science, 2009, 23(5):523-528.
    [2]严六零,郭文善.小麦籽粒体积及其充实度的研究[J].作物学报,1995,21(5):637-640.Yan L L. Guo W S Studies on grain volume and filling fullness in wheat[J]. Acta Agronomica Sinica, 1995, 21(5):637-640.
    [3]周红英.超大穗水稻品种R'1 126及所配组合形态,生理及产量构成研究[D].长沙:湖南农业大学博士学位论文,2014.Zhou H Y. Study on yield components and the characteristics of morphology and physiology of supper large panicle restore line R'126 and its combinations[D]. Changsha:PhD Dissertation of Hunan Agricultural University, 2014.
    [4] Sui B, Feng X, Tian G, et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors[J]. Field Crops Research, 2013, 150(15):99-107.
    [5] Sun Y, Ma J, Sun Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research,2012, 127(1):85-98.
    [6] Gu J, Chen Y, Zhang H, et al. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice[J]. Field Crops Research, 2017, 206:74-85.
    [7] Cheng S H, Zhuang J Y, Fan Y Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China[J]. Annals of botany,2007, 100(5):959-966.
    [8] Zhang Q F. Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007, 104(42):16402-16409.
    [9] Zahedi M, Jenner C F. Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling[J]. The Journal of Agricultural Science, 2003,141(2):203-212.
    [10] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrosestarch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types[J]. Plant Production Science,2007, 10(4):442-450.
    [11] Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat[J]. Plant Physiology,1999, 121(3):871-878.
    [12] Takai T, Fukuta Y, Shiraiwa T, et al. Time-related mapping of quantitative trait loci controlling grain-filling in rice(Oryza sativa L.)[J]. Journal of experimental botany,2005, 56(418):2107-2118.
    [13]王成瑷,赵磊,赵秀哲,等.氮肥用量对水稻不同穗位与粒位籽粒灌浆速率的影响[J].农学学报,2016, 6(2):8-21.Wang C, Zhao L, Zhao X, et al. Effects of nitrogen fertilizer amount on grain filling rate of different panicle and grain positions of rice[J].Journal of Agriculture, 2016, 6(2):8-21.
    [14]郭九信.养分优化管理提高水稻产量及其生理生态机制的研究[D].南京:南京农业大学博士学位论文,2015.GuoJ X. Studies on optimized nutrient management for rice yield and its physiological and ecological mechanisms[D]. Nanjing:PhD Dissertation of Nanjing Agricultural University, 2015.
    [15] Fageria N K. Yield physiology of rice[J]. Journal of Plant Nutrition,2007, 30(6):843-879.
    [16] GRiSP(Global Rice Science Partnership). Rice Almanac(4th edition)[M]. Los Byanos, Philippines:International Rice Research Institute, 2013.
    [17] Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice[J]. Crop Science, 1996, 36(5):1135-1139.
    [18] Huang M, Zou Y, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice[J]. Agricultural Sciences in China,2011,10(10):1537-1544.
    [19] Huang M, Zou Y, Jiang P, et al. Yield component differences between direct-seeded and transplanted super hybrid rice[J]. Plant Production Science, 2011,14(4):331-338.
    [20] Tanaka A, Garcia C V. Studies of the relationship between tillering and nitrogen uptake of the rice plant:2. Relation between tillering and nitrogen metabolism of the plant[J]. Soil Science and plant nutrition, 1965, 11(3):31-37.
    [21] Wada G. Effect of nitrogenous nutrition on the yield-determining process of rice plant[J]. Bulletin of the National Institute of Agriculture Sciences,1969, 16:27-167.
    [22]王惠芝,尤娟,王绍华,等.迟熟中粳稻穗茎生长与每穗颖花数的关系[J].作物学报,2007, 33(5):820-825.Wang H Z, You J, Wang S H, et al. Relationship between panicle and stem growth and spikelets per panicle in late maturing medium japonica rice[J]. Acta Agronomica Sinica, 2007, 33(5):820-825.
    [23]杨洪建,杨连新,黄建晔,等.FACE对武香粳14颖花分化和退化的影响[J].作物学报,2006, 32(7):1076-1082.Yang H J, Yang L X, Huang J Y, et al. Effect of free-air CO2enrichment on spikelet differentiation and degeneration of japonica rice(Oryza sativa L.)cultivar Wuxiangjing 14[J]. Acta Agronomica Sinica, 2006, 32(7):1076-1082.
    [24]柳新伟,孟亚利,周治国,等.水稻颖花分化与退化的动态特征[J].作物学报,2005, 31(4):451-455.Liu X W, Meng Y L. Zhou Z G, et al Dynamic characteristics of floret differentiation and degeneration in rice[J]. Acta Agronomica Sinica, 2005,31(4):451-455.
    [25] Abbate P E, Andrade F H, Culot J P. The effects of radiation and nitrogen on number of grains in wheat[J]. The Journal of Agricultural Science, 1995, 124(03):351-360.
    [26]黄静静.氮素穗肥和6-BA对水稻颖花分化的影响及其机制研究[D].南京:南京农业大学硕士学位论文,2008.Huang J J. The research of panicle fertilizer and 6-BA in panicle differentiation stage on spikelets forming and study on its mechanism[D]. Nanjing:MS Thesis of Nanjing Agricultural University, 2008.
    [27] Jiang Q, Du Y, Tian X, et al. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars[J]. European Journal of Agronomy, 2016, 74:185-192.
    [28]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003, 18(1):44-48.Tang Q Y, Zou Y B, Mi X C, et al. Grain yield construction and N fertilizer efficiency of super hybrid rice under different N applications[J]. Hybrid Rice, 2003, 18(1):44-48.
    [29]张均华,刘建立,张佳宝,等.施氮量对稻麦干物质转运与氮肥利用的影响[J].作物学报,2010, 3(10):1736-1742.Zhang J H, Liu J L, Zhang J B, et al. Effects of nitrogen application rates on translocation of dry matter and utilization of nitrogen in rice and wheat[J]. Acta Agronomica Sinica, 2010, 3(10):1736-1742.
    [30] Ma D Y. Effects of nitrogen application rates on accumulation,translocation, and partitioning of photosynthate in winter wheat at grain filling stage[J]. Acta Agronomica Sinica, 2008, 34(6):1027-1033.
    [31]王勤,张朝钟,戈芹英,等.水稻功能叶片对籽粒灌浆结实的影响初探[J].耕作与栽培,2011,14(1):26-27.Wang Q, Zhang C Z, Ge Q Y, et al. Effects of functional leaves of rice on grain filling and fruiting[J]. Tillage and Cultivation, 2011,14(1):26-27.
    [32]黄升谋.库源比对杂交水稻叶片衰老的影响[J].杂交水稻,2001,16(3):55-56.Huang S M. Effects of sink-source ratio on leaf senescence in hybrid rice[J]. Hybrid Rice, 2001, 16(3):55-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700