用户名: 密码: 验证码:
金刚石-碳化硅超硬复合材料的冲击强度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic impact strength of diamond-SiC superhard composite
  • 作者:李媛媛 ; 喻寅 ; 孟川民 ; 张陆 ; 王涛 ; 李永强 ; 贺红亮 ; 贺端威
  • 英文作者:Li Yuan-Yuan;Yu Yin;Meng Chuan-Min;Zhang Lu;Wang Tao;Li Yong-Qiang;He Hong-Liang;He Duan-Wei;Institute of Atomic and Molecular Physics, Sichuan University;National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP;School of Sciences, Northeastern University;
  • 关键词:金刚石 ; 碳化硅 ; 超硬复合材料 ; 冲击强度 ; 细观损伤
  • 英文关键词:diamond;;SiC;;superhard composite;;dynamic strength;;mesoscopic damage
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:四川大学原子与分子物理研究所;中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室;东北大学理学院;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2018YFA0305900);; 国家自然科学基金(批准号:11602244,11602245,11772090);; 冲击波物理与爆轰物理重点实验室基金(批准号:6142A03020204,LSD-KB1805)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915032
  • 页数:7
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:323-329
摘要
不同于延性介质,脆性介质的失效破坏严重制约着材料的强度.本文采用一种定量描述脆性介质力学性质的格点-弹簧模型,研究了金刚石-碳化硅超硬复合材料的冲击强度及其细观损伤机理,有助于避免灾变破坏、提高冲击强度.在模型中,通过构建不同体积分数比的金刚石和碳化硅两相复合材料,模拟获得了经受冲击波压缩形变后的宏观波剖面,显示出随着金刚石颗粒含量增加,冲击强度逐渐增大,而后减小;对应于这种变化,损伤演化分析揭示出存在三种细观损伤模式,当金刚石颗粒含量在10%—50%范围内增加时,长距离扩展滑移带占主导;当金刚石颗粒含量为70%时,滑移带已由长距离扩展演化为短细滑移带,损伤主要来自于碳化硅基体,多数金刚石颗粒未发生损伤;当金刚石颗粒含量超过70%的临界值后,短细滑移带也将被强烈限制,应力集中致使金刚石颗粒被严重损伤,冲击强度下降.研究结果为优化设计金刚石-碳化硅超硬复合材料以及制备新型抗冲击材料提供了物理认知.
        Unlike the ductile materials, the failure seriously limits the strength of the brittle medium. To understand the mechanism of controlling the dynamic impact strength of diamond-SiC superhard composite under shock wave compression, the numerical simulation is conducted with a lattice-spring model that can describe the mechanical properties of diamond-SiC superhard composite quantitatively. For the simulation, the diamond-SiC superhard composite is constructed by different volume content of diamond and SiC particles. The obtainted shock wave profiles indicate that the dynamic impact strength first increases and then decreases with the increase of diamond content in the sample. The analysis based on the meso-scale damage pattern reveals that such a variation of dynamic impact strength corresponds to three damage evolution modes. When the diamond content increases to a value between 10%–50% in volume percentage, the long slip bands are first dominated,and then becomes short slip bands when the diamond content is 70%, and damage happens mainly in SiC matrix whereas most of the diamond particles are not damaged. When the diamond content is above a critical value of 70% in volume percentage, even the short slip bands are limited heavily, which makes it difficult to relax the shear stress on diamond particles and causes serious damage to diamond particles, finally results in the reduction of dynamic strength.
引文
[1]Liu Y S,Hu C H,Men J,Feng W,Cheng L F,Zhang L T2015 J.Eur.Ceram.Soc.35 2233
    [2]Zhao Z F,Liu Y S,Feng W,Zhang Q,Cheng L F,Zhang L T2017 Diam.Relat.Mater.74 1
    [3]Ekimov E A,Gavriliuk A G,Palosz B,Gierlotka S,Dluzewski P,Tatianin E,Kluev Y,Naletov M,Presz A 2000Appl.Phys.Lett.77 954
    [4]Yang Z L,He X B,Wu M,Zhang L,Ma A,Liu R J,Hu H F,Zhang Y D,Qu X H 2013 Ceram.Int.39 3399
    [5]Zhao Y S,Qian J,Daemen L L,Pantea C,Zhang J Z,Voronin G A,Zerda T W 2004 Appl.Phys.Lett.84 1356
    [6]Lu K 2016 Nature Rev.Mater.1 16019
    [7]Huang Q,Yu D L,Xu B,Hu W T,Ma Y M,Wang Y B,Zhao Z S,Wen B,He J L,Liu Z Y,Tian Y J 2014 Nature 510 250
    [8]Cheng Z,Zhou H,Lu Q,Gao H,Lu L 2018 Science 362 1925
    [9]Yang M X,Yan D S,Yuan F P,Jiang P,Ma E,Wu X L2018 PNAS 115 7224
    [10]Mayer G 2005 Science 310 1144
    [11]Weaver J C,Milliron G W,Miserez A,Evans-Lutterodt K,Herrera S,Gallana I,Mershon W J,Swanson B,Zavattieri P,DiMasi E,Kisailus D 2012 Science 336 1275
    [12]Lian Y P,Zhang X,Liu Y 2012 Theor.Appl.Mech.Lett.2021003
    [13]Gusev A A 2004 Phys.Rev.Lett.93 034302
    [14]Yu Y,Wang W Q,He H L,Lu T C 2014 Phys.Rev.E 89043309
    [15]Yu Y,Wang W Q,He H L,Jiang T L,Huan Q,Zhang F P,Li Y Q,Lu T C 2015 J.Appl.Phys.117 125901
    [16]Nú?ez Valdez M,Umemoto K,Wentzcovitch R M 2012 Appl.Phys.Lett.101 171902
    [17]Varshney D,Shriya S,Varshney M,Singh N,Khenata R 2015J.Theor.Appl.Phys.9 221
    [18]Griffith A A,Eng M V I 1921 Phil.Trans.R.Soc.Lond.A221 163
    [19]Qu R T,Zhang Z F 2013 Sci.Rep.3 1117
    [20]Barenblatt G I 1962 Adv.Appl.Mech.7 55
    [21]Novikov N V,Dub S N 1991 J.Hard.Mater.2 3
    [22]Lawn B(translated by Gong J H)2010 Fracture of Brittle Solid(Beijing:Higher Education Press)pp44,45(in Chinese)[罗恩B著(龚江宏译)2010脆性固体断裂力学(北京:高等教育出版社)第44,45页]
    [23]Liu Y S,Hu C H,Feng W,Men J,Cheng L F,Zhang L T2014 J.Eur.Ceram.Soc.34 3489
    [24]Matthey B,H?hn S,Wolfrum A K,Mühle U,Motylenko M,Rafaja D,Michaelis A,Herrmann M 2017 J.Eur.Ceram.Soc.37 1917
    [25]Jiang T L,Yu Y,Huan Q,Li Y Q,He H L 2015 Acta Phys.Sin.64 188301(in Chinese)[姜太龙,喻寅,宦强,李永强,贺红亮2015物理学报64 188301]
    [26]Grady D E 1998 Mech.Mater.29 181
    [27]Eremin M O 2016 Phys.Mesomech.19 452
    [28]Lapin J,?tamborskáM,PelachováT,Bajana O 2018 Mater.Sci.Eng.A 721 1
    [29]Salamone S,Aghajanian M,Horner S E,Zheng J Q 2015 Adv.Ceram.Armor.XI 600 111
    [30]Lasalvia J C,Campbell J,Swab J J,Mccauley J W 2010JOM 62 16
    [31]Petel O E,Ouellet S 2017 J.Appl.Phys.122 025108
    [32]Petel O E,Ouellet S,Loiseau J,Frost D L,Higgins A J 2015Int.J.Impact Eng.85 83
    [33]Petel O E,Ouellet S,Loiseau J,Marr B J,Frost D L,Higgins A J 2013 Appl.Phys.Lett.102 064103
    [34]Sun Y,Yu Z,Wang Z,Liu X 2015 Constr.Build.Mater.96484

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700