用户名: 密码: 验证码:
地震和爆破事件源波形信号的卷积神经网络分类研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network
  • 作者:陈润航 ; 黄汉明 ; 柴慧敏
  • 英文作者:CHEN Run-hang;HUANG Han-ming;CHAI Hui-min;College of Computer Science and Information Engineering,Guangxi Normal University;
  • 关键词:天然地震事件 ; 爆破事件 ; 震源波形 ; 震源类型识别 ; 梅尔频率倒谱系数 ; 卷积神经网络
  • 英文关键词:earthquake event;;explosion event;;seismic source waveform;;seismic source type recognition;;Mel Frequency Cepstrum Coefficient(MFCC);;Convolutional Neural Network(CNN)
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:广西师范大学计算机科学与信息工程学院;
  • 出版日期:2018-01-23 14:49
  • 出版单位:地球物理学进展
  • 年:2018
  • 期:v.33;No.150
  • 基金:国家自然科学基金(41264001)资助
  • 语种:中文;
  • 页:DQWJ201804001
  • 页数:8
  • CN:04
  • ISSN:11-2982/P
  • 分类号:7-14
摘要
本文首先从震源波形中提取梅尔频率倒谱系数(MFCC)图,然后采用卷积神经网络(CNN)进行地震波形信号的震源类型—天然地震和爆破事件—分类识别.事件为首都圈及其附近的72个天然地震和101个人工爆破事件,用于提取梅尔频率倒谱系数图的波形信号为各观测台站波形3分量中的垂直分量波形.在各个事件的所有观测台站的垂直分量波形中,通过滑动窗口按同一准则去除被噪声淹没的部分台站波形,只选择留下未被噪声淹没的台站波形.每一个事件有107个观测台站,故有107份垂直分量波形,而不同事件被留下未被噪声淹没的波形则有几份至几十份不等.然后提取被留下未被噪声淹没的波形的梅尔频率倒谱系数图,以梅尔频率倒谱系数图作为CNN的输入,CNN的输出则为波形的震源类型(天然地震事件或爆破事件).若以单份波形为识别单元,采用五折交叉验证法进行测试,得到的平均准确率为95.78%.使用训练集中单份波形为识别单元,提取梅尔频率倒谱系数图,采用CNN训练出了天然地震事件与爆破事件波形分类器,一个事件在测试集中的多份波形信号通常不会都被正确识别,很可能有些波形被识别为天然地震事件,另一些波形被识别为爆破事件;这时,若识别单元改为事件,一个事件各台站的有效垂直分量波形中,超过一半的波形被识别为某一事件类型,则这个事件被归类为该事件类型,得到的正确识别率为97.1%.实验结果表明:卷积神经网络在天然地震事件与爆破事件的识别方面表现出色.这说明MFCC与卷积神经网络可以用于识别天然地震和爆破事件,尤其是深度学习更值得在地震信号处理方面做进一步的研究.
        This paper firstly extracts Mel Frequency Cepstrum Coefficient( MFCC) map from seismic source waveform,and then applies the Convolutional Neural Network( CNN) to discriminate seismic waveform signals between earthquake and explosion events.The events are 72 earthquake and 101 man-made explosion events in the Beijing region and nearby,and the waveform signal used to extract MFCC map is the vertical component of the 3 components of the waveform in each observation station. For any selected waveform( vertical component of 3 components) of all observation stations of anyone event,whether the waveform being messed with noises is judged by the same criterion,only the waveform that is not messed with noise is selected. Otherwise the waveform is discarded.Although there are 107 observation stations for each event,certainly there are 107 vertical components,after noise-messing waveforms being discarded,there are maybe only several to dozens of vertical components remaining for one event. Then,the MFCC map of the waveform that is left without noise or with small noise are extracted,and the MFCC map are used as the input of the CNN,and the output of the CNN is the seismic source type of the waveform( earthquake or explosion). If a single waveform is taken as a recognition unit,and 5-fold cross validation test was adopted,the average recognition rate is 95. 78%. Using the single waveform in the training set as the recognition unit,extracting MFCC map,adopting CNN training strategy, a classifier is formulated for discriminating earthquake and explosion events. In testing,multi waveform signals from the same event are not usually classified consistently for the same event,it is likely that some are classified as earthquake events,some are classified as explosion events. If the event is regarded as the recognition unit,for the same event,more than half of the waveforms are identified as a type of event,this event is classified as this type of event, and then the correct recognition rate is 97. 1%. The experimental results show that the convolutional neural network exhibits excellent performance in earthquake and explosion event recognition. This shows that MFCC and convolutional neural networks can be used to identify earthquake and explosion events,and deep learning theory may also be worth further study in seismic signal processing.
引文
Amendola A,Gabbriellini G,Dell’Aversana P,et al.2017.Seismic facies analysis through musical attributes[J].Geophysical Prospecting,65(S1):49-58.
    Bian Y J.2002.Application of genetic BP network to discriminating earthquakes and explosions[J].Acta Seismologica Sinica(in Chinese),24(5):516-524.
    Bouvrie J.2006.Notes on convolutional neural networks[J].Neural Nets.
    Huang H M,Bian Y J,Lu S J,et al.2010a.v-SVC algorithm applied in earthquake and explosion recognition and the choice of window length[J].Seismological and Geomagnetic Observation and Research(in Chinese),31(3):24-31.
    Huang H M,Bian Y J,Lu S J,et al.2010b.A wavelet feature research on seismic waveforms of earthquakes and explosions[J].Acta Seismologica Sinica(in Chinese),32(3):270-276.
    Kingma D P,Ba J.2014.Adam:A method for stochastic optimization[J].ar Xiv:1412.6980.
    Kislov K V,Gravirov V V.2017.Use of artificial neural networks for classification of noisy seismic signals[J].Seismic Instruments,53(1):87-101.
    Le Cun Y,Bengio Y,Hinton G.2015.Deep learning[J].Nature,521(7553):436-444.
    Liu X W,Liu H,Li Y M,et al.2007.Local waves decomposition and its applications to seismic signal time-frequency analysis[J].Progress in Geophysics(in Chinese),22(2):365-375,doi:10.3969/j.issn.1004-2903.2007.02.006.
    Proakis J G,Manolakis D G.1996.Digital Signal Processing:Principles,Algorithms,and Applications[M].3rd ed.Upper Saddle River,NJ:Prentice Hall.
    Qian F,Yin M,Su M J,et al.2017.Seismic facies recognition based on prestack data using deep convolutional autoencoder[J].ar Xiv:1704.02446.
    Strang G.1999.The discrete cosine transform[J].SIAM Review,41(1):135-147.
    Tian Y,Huang H M,Bian Y J,et al.2014.Visualization methods for discriminating between earthquakes and explosions[J].Advances in Geosciences(in Chinese),4(3):136-146.
    Xie T,Zheng X D,Zhang Y.2016.Seismic facies analysis based on linear prediction cepstrum coefficients[J].Chinese J.Geophys.(in Chinese),59(11):4266-4277,doi:10.6038/cjg20161127.
    Xie T,Zheng X D,Zhang Y.2017.Seismic facies analysis based on speech recognition feature parameters[J].Geophysics,82(3):O23-O35.
    Zhang B,Bian Y J,Wang T T.2014.Discrimination of earthquakes and explosions by SAMC decision method[J].Acta Seismologica Sinica(in Chinese),36(2):233-243,doi:10.3969/j.issn.0253-3782.2014.02.008.
    边银菊.2002.遗传BP网络在地震和爆破识别中的应用[J].地震学报,24(5):516-524.
    黄汉明,边银菊,卢世军,等.2010a.v-SVC算法在地震与爆破识别及窗长度选取中的应用[J].地震地磁观测与研究,31(3):24-31.
    黄汉明,边银菊,卢世军,等.2010b.天然地震与人工爆破的波形小波特征研究[J].地震学报,32(3):270-276.
    刘喜武,刘洪,李幼铭,等.2007.局域波分解及其在地震信号时频分析中的应用[J].地球物理学进展,22(2):365-375,doi:10.3969/j.issn.1004-2903.2007.02.006.
    田野,黄汉明,边银菊,等.2014.区分天然地震和人工爆炸的可视化方法[J].地球科学前沿,4(3):136-146.
    解滔,郑晓东,张?.2016.基于线性预测倒谱系数的地震相分析[J].地球物理学报,59(11):4266-4277,doi:10.6038/cjg20161127.
    张博,边银菊,王婷婷.2014.用逐步代价最小决策法识别地震与爆破[J].地震学报,36(2):233-243,doi:10.3969/j.issn.0253-3782.2014.02.008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700