用户名: 密码: 验证码:
LiF-DyF_3-Cu_2O-Dy_2O_3熔盐体系密度的影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density Impacts of LiF-DyF_3-Cu_2O-Dy_2O_3 Molten Salt System
  • 作者:廖春发 ; 陈淑梅 ; 王旭 ; 蔡伯清 ; 焦芸芬 ; 曾颜亮
  • 英文作者:Liao Chunfa;Chen Shumei;Wang Xu;Cai Boqing;Jiao Yunfen;Zeng Yanliang;Institute of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology;Ganzhou Nonferrous Metallurgy Research Institute;
  • 关键词:熔盐体系 ; Dy-Cu中间合金 ; 密度 ; Dy_2O_3 ; Cu_2O
  • 英文关键词:molten salt;;Dy-Cu intermediate alloy;;density;;Dy_2O_3;;Cu_2O
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:江西理工大学冶金与化学工程学院;赣州有色冶金研究所;
  • 出版日期:2018-05-14 13:09
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.276
  • 基金:国家自然科学基金项目(5167041092,51564015);; 江西省自然科学基金项目(20161BAB206142);; 江西理工大学优秀博士学位论文培育项目(YB2017007)资助
  • 语种:中文;
  • 页:ZXJS201903010
  • 页数:7
  • CN:03
  • ISSN:11-2111/TF
  • 分类号:75-81
摘要
在探索出制取Dy-Cu中间合金方法的基础上,为了进一步优化电解过程的工艺参数,采用阿基米德法对LiF-DyF_3-Dy_2O_3-Cu_2O熔盐体系的密度进行了研究。考察了温度、单一氧化物(Dy_2O_3或Cu_2O)以及混合氧化物(Dy_2O_3与Cu_2O)对熔盐体系密度的影响,并通过最小二乘法对数据进行了拟合,建立了温度、 Dy_2O_3含量、 Cu_2O含量与熔盐密度之间的数学回归方程。研究结果表明,熔盐体系的密度随温度的升高而线性下降,而随单一氧化物加入量、混合氧化物加入量及混合氧化中w_(Dy_2O_3)与w_(Cu_2O)的比值增大而增大。在温度为910~1030℃,w_(Dy_2O_3)为0%~2.0%(质量分数),w_(Cu_2O)为0%~2.0%范围内,温度(t), Dy_2O_3加入量w_(Dy_2O_3), Cu_2O加入量w_(Cu_2O)与熔盐密度(ρ)的关系可以表示为:ρ=-7.01813-0.00163t+0.01832 w_(Dy_2O_3)+0.10289w_(Cu_2O)。从熔体密度角度来看,在氧化物的加入量满足2.0%≤w_(Dy_2O_3)+w_(Cu_2O)≤3.0%,w_(Dy_2O_3)∶w_(Cu_2O)<3∶2,电解温度控制在960~980℃的条件下,电解LiF-DyF_3-Dy_2O_3-Cu_2O熔盐制取Dy-Cu合金较为理想。
        In order to further optimize the electrolysis process parameters for preparing Dy-Cu intermediate alloy in LiF-DyF_3-Dy_2O_3-Cu_2O molten salt, the density of LiF-DyF_3-Dy_2O_3-Cu_2O molten salt system was determined by Archimedes method. The effects of temperature, single oxide(Dy_2O_3 or Cu_2O) and mixed oxides(Dy_2O_3 and Cu_2O) on the density of molten salt system were investigated. The mathematical model of density was established by least-squares fitting data. The regression equation between temperature, Dy_2O_3 content, Cu_2O content and molten salt density was determined. The results showed that the density of molten salt system decreases regularly with the increase of temperature, and increases with the addition of a single oxide, the addition of mixed oxides and the ratio of w_(Dy_2O_3) to w_(Cu_2O) in mixed oxidation. The relationship among temperature(t), Dy_2O_3 addition amount w_(Dy_2O_3), Cu_2O addition amount w_(Cu_2O) and molten salt density(ρ) could be expressed as ρ=-7.01813-0.00163t+0.01832 w_(Dy_2O_3)+0.10289w_(Cu_2O) at a temperature of 910 to 1030 ℃, w_(Dy_2O_3) of 0% to 2.0%(mass fraction), and w_(Cu_2O) of 0% to 2.0%(mass fraction). From the perspective of melt density, the optimal electrolysis conditions for preparing Dy-Cu alloy in LiF-DyF_3-Dy_2O_3-Cu_2O molten salt were 2.0%≤w_(Dy_2O_3)+w_(Cu_2O)≤3.0%(mass fraction), w_(Dy_2O_3)∶w_(Cu_2O)<3∶2, the electrolysis temperature was in the range of 960 to 980 ℃.
引文
[1] Zhang J,Xie B,Zhao L Z,Hu Y.Research development and strengthening way of high-strength and high-conductivity copper alloys [J].Hot Working Technology,2014,43(14):21.(张坚,谢斌,赵龙志,胡勇.高强高导铜合金的强化方法和研究进展 [J].热加工工艺,2014,43(14):21.)
    [2] Wen Q Y.Study status and applications of preparation methods of high strength and high conductivity copper alloy [J].Metal Materials and Metallurgy Engineering,2017,45(3):3.(文靖瑜.高强高导铜合金制备方法的研究现状及应用 [J].金属材料与冶金工程,2017,45(3):3.)
    [3] Zhang J G,Wang L M,Zhang S M,Wang L S,Zhang J H.The copper and copper alloy powders application and research status [J].Powder Metallurgy Industry,2013,23(1):52.(张敬国,汪礼敏,张少明,王林山,张景怀.铜及铜合金粉末应用及研究现状 [J].粉末冶金工业,2013,23(1):52.)
    [4] Wang T G,Qin Q,Liang Q C.Effect of rare earth element La content on trobological properties of copper-based powder metallurgy friction materials [J].Lubrication Engineering,2016,41(4):49.(王天国,覃群,梁启超.稀土La含量对铜基粉末冶金摩擦材料摩擦磨损性能的影响 [J].润滑与密封,2016,41(4):49.)
    [5] Li Q,Ma B,Huang G J,Xie S S.Research progress and prospects of effect of rare earth on high-strength high-conductivity copper alloy [J].Hot Working Technology,2011,40(2):1.(李强,马彪,黄国杰,谢水生.稀土在高强高导铜合金中的研究现状与展望 [J].热加工工艺,2011,40(2):1.)
    [6] Zhang S H,Chen Y,Li H H,Wu J H,Liu J S.Thermodynamic calculation and industrial application of rare earth removing impurities and microalloying in impure red-coppers [J].Chinese Journal of Rare Metals,2017,41(5):589.(张士宏,陈岩,李海红,吴金虎,刘劲松.紫杂铜的稀土除杂及微合金化热力学研究及实践 [J].稀有金属,2017,41(5):589.)
    [7] Pang S M,Wang Z Q,Zhou L,Chen B Y,Xu L H,Zhao B,Yan S H,Li Z A.Study on preparation of high-purified terbium and dysprosium metals used for rare earth giant magnetostrictive materials [J].Chinese Rare Earths,2008,29(6):31.(庞思明,王志强,周林,陈博雨,徐立海,赵斌,颜世宏,李宗安.稀土超磁致伸缩材料用高纯金属铽、 镝的制备工艺研究 [J].稀土,2008,29(6):31.)
    [8] Liu F D,Su Y,Chen Y Q,Xiong Y F,Yi X F.Investigation and development of NdFeB magnets with excellent magnetic properties and stability of temperature [J].Metallic Functional Materials,2010,17(3):5.(刘福东,苏勇,陈翌庆,熊永飞,衣晓飞.高热稳定性钕铁硼磁体的研制与开发 [J].金属功能材料,2010,17(3):5.)
    [9] Yu L Q,Cui X G,Luo W,Yan M.Influence of Cu and Gd on thermal stability and magnetic properties of Nd(DyAl)FeB magnets [J].Journal of Zhejiang University,2005,39(8):1251.(于濂清,崔熙贵,罗伟,严密.添加Cu和Gd对Nd(DyAl)FeB 磁体热稳定性和磁性能的影响 [J].浙江大学学报,2005,39(8):1251.)
    [10] Chen Y X.Research progress of preparation of rare earth metals by electrolysis in fluoride salt system [J].Chinese Rare Earths,2014,35(2):99.(陈宇昕.氟化物体系电解稀土氧化物制备稀土金属研究 [J].稀土,2014,35(2):99.)
    [11] Zhou L,Li Z A,Chen D H,Wang Z Q,Pang S M,Zhao B.Electrochemical mechanism of preparing SmFe alloy by molten salts electrolysis in LiF-CaF2-SmF3 system [J].Chinese Journal of Rare Metals,2017,41(2):190.(周林,李宗安,陈德宏,王志强,庞思明,赵斌.LiF-CaF2-SmF3体系熔盐电解制备SmFe合金的电化学机制研究 [J].稀有金属,2017,41(2):190.)
    [12] Guo T,Wang S D,Ye X S,Li Q,Liu H N,Guo M,Wu Z J.Research progress in the preparation of rare earth alloys by molten salt electrolysis method [J].Scientia Sinica (Chimica),2012,42(9):1328.(郭探,王世栋,叶秀深,李权,刘海宁,郭敏,吴志坚.熔盐电解法制备稀土合金研究进展 [J].中国科学:化学,2012,42(9):1328.)
    [13] Wang J,Hua Z S,Ma H,Fan Y Q,Wang L.Research progress on preparation of rare earth magnesium alloys by molten salt electrolysis [J].Chinese Rare Earths,2017,38(2):100.(王健,华中胜,马欢,樊友奇,王磊.熔盐电解法制备稀土镁合金的研究进展 [J].稀土,2017,38(2):100.)
    [14] Liao C F,Wang X,Cai B Q,Chen S M,Zeng Y L.A dysprosium copper intermediate alloy prepared by molten salt electrodeposition and its preparation method [P].China:201711114214.1,2018.(廖春发,王旭,蔡泊清,陈淑梅,曾颜亮.一种熔盐电解共沉积制备的铜镝中间合金及其制备方法 [P].中国:201711114214.1,2018.)
    [15] Lu G M,Zhang R Q.The study on mathematical model of density of NdF3-LiF molten salts and effect of the additive BaF2 [J].Non-ferrous Mining and Metallurgy,1990,(3):351.
    [16] Guo C T,Du S L,Li J,Lu H Y,Zhao L S,Tang D X.Density and viscosity of NdF3-LiF-BaF2 molten salts [J].Journal of the Chinese Society of Rare Earths,1989,7(1):7.
    [17] Zhe Y L.Electrodeposition Mg-Li-Pr alloy and research of physicochemical property of molten salt[D].Harbin:Harbin Engineering University,2009.29.(褚衍龙.熔盐电解制备Mg-Li-Pr合金及熔盐物理化学性质的研究 [D].哈尔滨:哈尔滨工程大学,2009.29.)
    [18] Zhu X P,Sun S C,Lu S D,Yang Y,Tu G F,Huang X W.Density of LaF3-LiF-La2O3 molten salt system [J].Journal of the Chinese Society of Rare Earths,2015,33(2):211.(朱小平,孙树臣,卢帅丹,杨英,涂赣峰,黄小卫.LaF3-LiF-La2O3系熔盐密度的研究 [J].中国稀土学报,2015,33(2):211).
    [19] Bao M R G G W,Wang Z W,Gao B L,Shi Z N.Effect of ZrO2 content on the density of nNaF-AlF3-Al2O3-CaF2 molten salt system [J].Journal of Northeastern University(Natural Science),2012,33(6):866.(包莫日根高娃,王兆文,高炳亮,石忠宁.ZrO2对nNaF·AlF3-Al2O3-CaF2熔盐体系密度的影响 [J].东北大学学报(自然科学版),2012,33(6):866.)
    [20] Hu X W,Wang Z W,Gao B L,Shi Z N,Liu F G,Cao X Z.Density and ionic structure of NdF3-LiF melts [J].Journal of Rare Earths,2010,28(4):587.
    [21] Fu J,Wu W Y,Peng K W,Wang Z W,Tu G F.Na3AlF6-AlF3-Al2O3-CaF2-MgF2-NaCl investigation of electrolyte density in low temperature aluminum electrolysis [J].Journal of Materials and Metallurgy,2004,3(2):113.(付静,吴文远,彭可武,王兆文,涂赣峰.Na3AlF6-AlF3-Al2O3-CaF2-MgF2-NaCl低温铝电解质密度的研究 [J].材料与冶金学报,2004,3(2):113.)
    [22] Guo C T,Du S L,Li J,Lu H Y,Zhao L S,Tang D X.Density and viscosity of NdF3-LiF-BaF2 molten salt [J].Journal of the Chinese Society of Rare Earths,1989,(1):7.(郭春泰,杜森林,李洁,鲁化一,赵连山,唐定骧.NdF3-LiF-BaF2熔盐体系的密度和粘度 [J].中国稀土学报,1989,(1):7.)
    [23] Jiao Y F,Wang X,Liao C F,SU J,Tang H,Cai B Q,Sun Q C.Density of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 molten salt melt for Al-Sm alloy [J].Journal of Rare Earths,2018,(2):190.
    [24] Liao C,Jiao Y,Wang X,Cai B Q,Sun Q C.Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production [J].International Journal of Minerals,Metallurgy,and Materials,2017,24(9):1034.
    [25] Janz G J.Molten Salt Handbook [M].New York:Academic Press,1967.39.
    [26] Xin P F.Study of Physical and Chemical Properties of K,Li-Enriched Aluminum Electrolyte [M].Changsha:Central South University,2012.55(辛鹏飞.富Li,K工业铝电解质的物理化学性质研究 [D].长沙:中南大学,2012.55.)
    [27] Dutton S E,Hirai D,Cava R J.Low temperature synthesis of LnOF rare-earth oxyfluorides of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE [J].J.Mater.Res.Bull.,2012,47:714.
    [28] Guo X,Sietsma J,Yang Y.A critical evaluation of solubility of rare earth oxides in molten fluorides [A].Ismar D L,Walter L F eds,Rare Earths Industry [M].2015.223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700