用户名: 密码: 验证码:
煤化工浓盐水对煤泥水沉降特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of saline wastewater of coal chemical industry on the sedimentation characteristics of coal slurry
  • 作者:黄根 ; 郭宣
  • 英文作者:HUANG Gen;GUO Xuan;School of Chemical and Environmental Engineering,China University of Mining and Technology( Beijing);
  • 关键词:浓盐水 ; 多重散射光分析仪 ; 煤泥水 ; 沉降特性 ; 凝聚
  • 英文关键词:saline wastewater;;turbiscan lab;;coal slurry;;sedimentation characteristics;;coagulation
  • 中文刊名:JJMS
  • 英文刊名:Clean Coal Technology
  • 机构:中国矿业大学(北京)化学与环境工程学院;
  • 出版日期:2019-05-13 10:41
  • 出版单位:洁净煤技术
  • 年:2019
  • 期:v.25;No.121
  • 基金:国家自然科学基金资助项目(51504262)
  • 语种:中文;
  • 页:JJMS201903020
  • 页数:6
  • CN:03
  • ISSN:11-3676/TD
  • 分类号:132-137
摘要
煤化工浓盐水中含有大量无机盐离子,外排污染环境,且处理和回收成本较高。由于煤化工浓盐水含有的无机盐离子与选煤常用凝聚剂有效离子成分类似,本文以煤化工浓盐水作为煤泥水处理的凝聚剂,以内蒙古某地区难沉降不黏煤为研究对象,研究了浓盐水用量对煤泥水沉降特性的影响。采用多重散射光分析仪对煤泥水系统稳定性进行分析,通过激光粒度分析仪分析了煤泥颗粒粒度变化,以聚丙烯酰胺作为絮凝剂,研究了浓盐水用量对煤泥水沉降和澄清液浊度的影响。结果表明,结晶盐用量0~62.5 kg/t,未添加浓盐水时,煤泥水系统比较稳定,动力学稳定性指数(TSI)无明显变化;随着结晶盐用量增加,煤泥颗粒开始凝聚,TSI值显著增加,结晶盐用量为50 kg/t时,煤泥水顶部TSI达到最大值,此后TSI值随结晶盐用量的增加开始减小。同时,煤泥表面Zeta电位随着结晶盐用量增加先迅速升高后趋于稳定,表明结晶盐中的阳离子具有压缩双电层,降低表面电位的作用。粒度分析结果表明,未添加浓盐水时,煤泥水颗粒D_(50)为9.43μm,D_(90)为45.57μm;结晶盐用量为12.5 kg/t时,煤泥水颗粒D_(50)增加至11.92μm,D_(90)增加至63.77μm,说明浓盐水的加入促进了颗粒凝聚。煤泥水沉降试验结果与TSI变化规律基本一致,随着结晶盐用量的增加,煤泥沉降速度逐渐加快,结晶盐用量为50 kg/t时,沉降速率达到最大值,上层澄清液浊度达到最小值。试验结果表明,煤化工浓盐水可有效促进煤泥颗粒之间的凝聚,提高难沉降煤泥水的沉降效果。可考虑将煤化工浓盐水作为煤泥水处理凝聚剂引入煤泥水处理系统中,以降低浓盐水处理成本,提高煤泥水处理效果,但浓盐水对于整个选煤工艺系统分选指标、产品性能和设备寿命等方面的影响仍需进一步研究。
        The saline wastewater of coal chemical industry contains a large amount of inorganic salt ions.For saline wastewater,the discharge will cause environmental pollution,while the treatment and recovery cost is relatively high.In this paper,saline wastewater of coal chemical industry was used as a coagulant for coal slurry as the inorganic salt ions in the saline wastewater were similar to the effective ionic components of the coagulant.The influence of saline dosage on the sedimentation characteristics of coal slurry was discussed with non-stick coal sample from Inner Mongolia.The stability of coal slurry was analyzed by a turbiscan lab.The changes of the coal particle size were measured by a laser particle size analyzer.The effects of saline dosage on the sedimentation effect and supernatant turbidity were studied with polyacrylamide as a flocculant.The results show that the coal slurry system is relatively stable when no saline wastewater is added and the turbiscan ability index(TSI)has no obvious change.With the increase of saline dosage at 0-62.5 kg/t,the coal particles begin to agglomerate,and the TSI value increases significantly.The TSI at the top area of the coal slurry reaches a maximum value when saline dosage is 50.0 kg/t,then the TSI value begins to decrease when saline dosage is further added.Simultaneously,the zeta potential of the coal slime surface increases rapidly and then tends to be steady with the increase of saline dosage,indicating that the cations in the saline have an effect on compressing electric double layer and reducing the surface potential.The results of particle size analysis show that the D_(50)and D_(90)of the coal slime particles is 9.43μm and 45.57μm separately without adding saline wastewater.And these two values increase to 11.92μm and 63.77μm,separately,when 12.5 kg/t saline dosage is added,demonstrating that the addition of saline wastewater promot the coagulation among particles.The results of slurry water sedimentation test are basically consistent with TSI,and the settling rate of the coal slurry gradually accelerates with the increase of saline dosage.When the saline dosage is 50 kg/t,the settling rate reaches the maximum value and the supernatant turbidity reaches the minimum value.The results show that the saline wastewater can effectively promote the coagulation of coal slime particles and improve the sedimentation effect of difficult-to-settle slurry water.Therefore,saline wastewater from coal chemical industry can be considered to use as a coagulant for coal slurry in order to reduce the treatment cost of saline wastewater and improve the sedimentation effect of coal slurry.However,the influences of saline wastewater on the separation index,product performance and equipment life in the whole coal preparation process system need further study.
引文
[1]余长军.煤化工技术发展现状及趋势[J].煤炭与化工,2016,39(5):27-30.YU Changjun. Present situation and development trend of coal chemical industry[J]. Coal and Chemical Industry,2016,39(5):27-30.
    [2]黄开东,李强,汪炎.煤化工废水“零排放”技术及工程应用现状分析[J].工业用水与废水,2012(5):1-6.HUANG Kaidong, LI Qiang, WANG Yan. Techniques for wastewater zero discharge in coal chemical industry and their application status[J].Industrial Water and Wastewater,2012(5):1-6.
    [3]金云巧.煤化工浓盐水及结晶盐处理技术探讨[J].煤化工,2016,44(4):18-21.JIN Yunqiao. Study on technical approach of saline wastewater and crystallized salt in coal chemical industry[J]. Coal Chemical Industry,2016,44(4):18-21.
    [4]郭森,童莉,周学双,等.煤化工行业高含盐废水处理探讨[J].煤化工,2011,39(1):27-30.GUO Sen,TONG Li,ZHOU Xueshuang,et al. Investigation on treatment of hypersaline wastewater from the coal chemical plants[J].Coal Chemical Industry,2011,39(1):27-30.
    [5]宋英豪,陈瑞芳,熊娅,等.基于零排放浓盐水处理技术的发展[J].环境工程,2013,31(S1):263-265.SONG Yinghao,CHEN Ruifang,XIONG Ya,et al. Development of strong brine treatment technology based on ZLD[J].Environmental Engineering,2013,31(S1):263-265.
    [6] JIANG C X,WANG Y M,ZHANG Z H,et al. Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater[J]. Journal of Membrane Science,2014,450:323-330.
    [7] REIG M,CASAS S,GIBERT O,et al.Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines:Production of drinking and waste water treatment chemicals[J].Desalination,2016,382:13-20.
    [8] LI C N,YOGI GOSWAMI D,SHAPIRO A,et al.A new combined power and desalination system driven by low grade heat for concentrated brine[J].Energy,2012,46(1):582-595.
    [9] GIWA A,DUFOUR V,AL MARZOOPI F,et al. Brine management methods:Recent innovations and current status[J].Desalination,2017,407:1-23.
    [10] CHOI Y,NAIDU G,JEONG S,et al.Experimental comparison of submerged membrane distillation configurations for concentrated brine treatment[J].Desalination,2017,420:54-62.
    [11]耿翠玉,乔瑞平,任同伟,等.煤化工浓盐水“零排放”处理技术进展[J].煤炭加工与综合利用,2014(10):34-42.
    [12]姜兴涛,姜成旭.利用蒸发塘处置煤化工浓盐水技术[J].化工进展,2012,31(S1):276-278.JIANG Xingtao,JIANG Chengxu. Technology of disposal of condensed coal chemical saltwater by evaporation-pool[J].Chemical Industry and Engineering Progress,2012,31(S1):276-278.
    [13]王愉晨,池勇志,苏润西,等.浓盐水零排放技术的研究进展[J].化工进展,2013,32(6):1423-1428.WANG Yuchen,CHI Yongzhi,SU Runxi,et al.Research development on zero liquid discharge technologies of concentrated brine[J].Chemical Industry and Engineering Progress,2013,32(6):1423-1428.
    [14]荣用巧,许贵彦.煤化工浓盐水作为洗煤补水实验研究[J].水处理技术,2015,41(5):39-41.RONG Yongqiao,XU Guiyan. Experimental study on using brine of coal chemical industry as coal washmg supplement water[J].Technology of Water Treatment,2015,41(5):39-41.
    [15]熊亮,于广欣,孙玉平,等.煤化工浓盐水用于煤泥水沉降试验研究[J].洁净煤技术,2015,21(4):25-28.XIONG Liang,YU Guangxin,SUN Yuping,et al. Application of strong brine from coal chemical industry in coal slime water settling[J].Clean Coal Technolog,2015,21(4):25-28.
    [16] ZHANG Z J,NONG H T,ZHUANG L,et al.Effect of water hardness on the settling characteristics of coal tailings[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects,2017,39(12):1317-1322.
    [17]黄鲁华,王永田,朱振娜,等.絮凝剂、凝聚剂对低阶煤浮选效果的影响[J].选煤技术,2017(5):1-4.HUANG Luhua,WANG Yongtian,ZHU Zhenna,et al. Effect of flocculating and coagulating agents on performance of flotation of low-rank coal[J].Coal Preparation Technology,2017(5):1-4.
    [18]闵凡飞,陈军,彭陈亮.煤泥水中微细高岭石/蒙脱石颗粒表面水化分子动力学模拟研究[J].煤炭学报,2018,43(1):242-249.MIN Fanfei,CHEN Jun,PENG Chenliang. Molecular dynamics simulation on the surface hydration of fine kaolinite and montmorillonite particles in coal slurry water[J]. Journal of China Coal Society,2018,43(1):242-249.
    [19]冯莉,刘炯天,张明青,等.煤泥水沉降特性的影响因素分析[J].中国矿业大学学报,2010,39(5):671-675.FENG Li,LIU Jiongtian,ZHANG Mingqing,et al.Analysis on influencing factors of sedimentation characteristics of coal slime water[J]. Journal of China University of Mining&Technology,2010,39(5):671-675.
    [20]林喆,杨超,沈正义,等.高泥化煤泥水的性质及其沉降特性[J].煤炭学报,2010,35(2):312-315.LIN Zhe,YANG Chao,SHEN Zhengyi,et al. The properties and sedimentation characteristics of extremely sliming coal slime water[J].Journal of China Coal Society,2010,35(2):312-315.
    [21] SHANG X J,ZHU Y M,LI Z H.Dispersion of silicon carbide in poly alpha olefins-6 and trimethylopropane trioleate[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,509:244-251.
    [22]黄波,王积禄,聂瑶.基于多重散射光理论的高岭石沉降特性研究[J].煤炭科学技术,2016,44(11):184-188.HUANG Bo,WANG Jilu,NIE Yao. Study on sedimentation characteristics of kaolinite based on multiple scattering light theory[J].Coal Science and Technology,2016,44(11):184-188.
    [23] QIN Y L,YU L X,WU R C,et al. Biorefinery Lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite[J].ACS Sustainable Chemistry&Engineering,2016,4(4):2200-2205.
    [24] REN Y G,ZHENG J X,XU Z Q,et al.Application of turbiscan lab to study the influence of lignite on the static stability of PCLWS[J].Fuel,2018,214:446-456.
    [25] CELIA C,TRAPASSO E,COSCO D,et al.Turbiscan LabExpert analysis of the stability of ethosomesand ultradeformable liposomes containing a bilayer fluidizing agent[J]. Colloids and Surfaces B:Biointerfaces,2009,72(1):155-160.
    [26]廖祥磊,闵凡飞,刘令云.褐煤颗粒界面与煤泥水溶液相互作用机制[J].矿物学报,2018,38(1):85-92.LIAO Xianglei,MIN Fanfei,LIU Lingyun. A Study on interaction mechanism between lignite particle interface and slime water[J].Acta Mineralogica Sinica,2018,38(1):85-92.
    [27]董宪姝,姚素玲,刘爱荣,等.电化学处理煤泥水沉降特性的研究[J].中国矿业大学学报,2010,39(5):753-757.DONG Xianshu,YAO Suling,LIU Airong,et al.Settling characteristics of slurry pretreated by electrochemistry[J].Journal of China University of Mining&Technology,2010,39(5):753-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700